Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (2) : 80-86     DOI: 10.6046/gtzyyg.2014.02.14
Technology and Methodology |
Automatic detection of night time radiation fog based on SBDART radiative transfer model and the analysis of time series
ZHANG Weikang, MA Huiyun, ZOU Zhengrong, HE Zhuochen, ZHAO Guoqing
Department of Surveying and Geo-informatics, Central South University, Changsha 410083, China
Download: PDF(4155 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

How to obtain suitable threshold to distinguish radiation fog,clear sky surface and clouds is the focus of the study of fog detection. The Santa Barbara DISORT atmospheric radiative transfer(SBDART)model can simulate the fog top brightness temperature. In this paper,the authors obtained the brightness temperature difference(BTD)between MODIS B20 and MODIS B31 bands based on the model and applied it to the detection of radiation fog at night. The data used for feasibility test were from EOS MODIS satellite in the North China Plain on November 25, 2007,and ground validation data were from the National Satellite Meteorological Center. The varification results show that the accuracy of using the model to monitor the night time radiation fog (POD)is 78.3%,the false alarm rate (FAR)is 21.7%, the reliability index(CSI)is 0.643,and the Kappa factor is 0.730. To further validate the stability of the method,the authors selected the sequence of eight satellite images in northern China for the time series analysis. The results show that the mean value of reliability index is 0.744,suggesting that the proposed method can serve as the foundation of night time fog forecasting and parameter inversion.

Keywords remote sensing      vegetation cover      trend analysis      dynamic change      Bashang Area of Hebei Province     
:  TP751.1  
Issue Date: 28 March 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Leigang
LIU Jianfeng
XU Quanhong
Cite this article:   
SUN Leigang,LIU Jianfeng,XU Quanhong. Automatic detection of night time radiation fog based on SBDART radiative transfer model and the analysis of time series[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 80-86.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.02.14     OR     https://www.gtzyyg.com/EN/Y2014/V26/I2/80

[1] Eyre J R,Brownscombe J L,Allam R J.Detection of fog at night using advanced very high resolution radiometer(AVHRR)imagery[J].Meteorological Magazine,1984,113(1346):266-271.

[2] Ellrod G P.Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery[J].Weather and Forecasting,1995,10(3):606-619.

[3] 张顺谦,杨秀蓉.基于神经网络和分形纹理的夜间浓雾遥感监测技术[J].应用气象学报,2005,16(6):804-810. Zhang S Q,Yang X R.Remote sensing monitoring technology of thick fog at night based on neural networks and fractal grain [J]. Journal of Applied Meteorological Science,2005,16(6): 804-810.

[4] 马慧云,李德仁,刘良明,等.基于AVHRR,MODIS和MVRIS数据的辐射雾变化检测与分析[J].武汉大学学报:信息科学版,2007,32(4):297-300. Ma H Y,Li D R,Liu L M,et al.Fog dynamic change detection based on AVHRR,MODIS and MVIRS data[J].Geomatics and Information Science of Wuhan University,2007,32(4):297-300.

[5] 张春桂,蔡义勇,张加春.MODIS遥感数据在我国台湾海峡海雾监测中的应用[J].应用气象学报,2009,20(1):8-16. Zhang C G,Cai Y Y,Zhang J C.The application of monitoring sea fog in Taiwan Strait using MODIS remote sensing data[J].Journal of Applied Meteorological Science,2009,20(1):8-16.

[6] Ricchiazzi P,Yang S R,Cautier C,et al.SBDART:A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere[J].Bulletin of the American Meteorological Society,1998,79(10):2101-2144.

[7] 吴晓京,陈云浩,李三妹.应用MODIS数据对新疆北部大雾地面能见度和微物理参数的反演[J].遥感学报,2005,9(6):688-696. Wu X J,Chen Y H,Li S M.Utilizing MODIS data to retrieve the visibility and microphysical properties of fog happens in the northwest China[J].Journal of Remote Sensing,2005,9(6):688-696.

[8] 周旋,周晓中,吴耀平,等.利用MODIS数据监测夜间雾[J].武汉大学学报:信息科学版,2008,33(6):581-583. Zhou X,Zhou X Z,Wu Y P,et al.Detection of nighttime fog using MODIS data[J].Geomatics and Information Science of Wuhan University,2008,33(6):581-583.

[9] Chaurasia S,Sathiyamoorthy V,Bipasha P S.Night time fog detection using MODIS data over northern India[J].Meteorological Applications,2011,18(4):483-494.

[10] 马慧云,李德仁,刘良明,等.基于MODIS卫星数据的平流雾检测研究[J].武汉大学学报:信息科学版,2005,30(2):143-146. Ma H Y,Li D R,Liu L M,et al.Fog detection based on EOS MODIS data[J].Geomatics and Information Science of Wuhan University,2005,30(2):143-146.

[11] Cermak J,Bendix J.Dynamical nighttime fog/low stratus detection based on Meteosat SEVIRI data:A feasibility study[J].Pure and Applied Geophysics,2007,164(7-8):1179-1192.

[12] 王丽萍,陈少勇,董安祥.中国雾区的分布及其季节变化[J].地理学报,2005,60(4):689-697. Wang L P,Chen S Y,Dong A X.The distribution and seasonal variations of fog in China[J].Acta Geographica Sinica,2005,60(4):689-697.

[13] 李子华,杨军,石春娥,等.地区性浓雾物理[M].李子华,译.北京:气象出版社,2008:66-69. Li Z H,Yang J,Shi C E,et al.The physics of regional dense fog[M].Translated by Li Z H.Beijing:China Meteorological Press,2008:66-69.

[14] 周梅,银燕,王巍巍.2006年12月24—27日大范围大雾过程数值模拟[J].应用气象学报,2008,19(5):602-610. Zhou M,Yin Y,Wang W W.A numerical study on the long-lasting wide spread dense fog event during December 24—27[J].Journal of Applied Meteorological Science,2008,19(5):602-610.

[15] 李亚春,孙涵,徐萌.卫星遥感在大雾生消动态监测中的应用[J].灾害学,2001,16(1):45-49. Li Y C,Sun H,Xu M.A study on the application of remote sensing technique to monitoring of the tendency of fog dissipation[J].Journal of Catastrophology,2001,16(1):45-49.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
[11] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[12] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[13] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[14] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[15] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech