Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 85-92     DOI: 10.6046/gtzyyg.2020186
|
Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province
CHEN Baolin1(), ZHANG Bincai2, WU Jing1(), LI Chunbin1, CHANG Xiuhong1
1. College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
2. Gansu Geomatic Information Center, Lanzhou 730030, China
Download: PDF(4484 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

When a satellite is in transit, the presence of clouds or fog will cause shadows on some remote sensing images, and this accordingly directly affects the quality of image and the extraction, interpretation and recognition of the feature information. The authors firstly counted the data of 2017 MODIS11A1 in Gansu Province, and found that the data pixels values of 2017 MODIS11A1 are void to a large extent. Mainly because it is difficult for the remote sensing image to penetrate the cloud to obtain the feature information, the image pixel value is 0. Then the authors explored and compensated the missing value based on the phenological solar term as the time period, proposing the method of historical average value. After using the historical average method to compensate the data, the authors found that the effective utilization ratio of pixels could be greatly improved. The image information basically reflects the real feature information, and the compensation result can meet the demand of remote sensing images.

Keywords pixel cloud compensation      MODIS data      phenology      historical average method     
ZTFLH:  TP79  
Corresponding Authors: WU Jing     E-mail: 1071435709@qq.com;wujing@gsau.edu.cn
Issue Date: 21 July 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Baolin CHEN
Bincai ZHANG
Jing WU
Chunbin LI
Xiuhong CHANG
Cite this article:   
Baolin CHEN,Bincai ZHANG,Jing WU, et al. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020186     OR     https://www.gtzyyg.com/EN/Y2021/V33/I2/85
Fig.1  MOD11A1 data 2017 daytime pixel 0 value frequency distribution matrix
补偿日期 历史倒推日期 天数/d
7月22日 7月21日—7月7日 15
8月7日 8月6日—7月23日 15
12月7日 12月6日—11月22日 15
12月22日 12月21日—12月7日 15
Tab.1  Comparison table of compensation date and reverse date
Fig.2  Frequency distribution of 0 value of daytime pixels in 2017
Fig.3  Frequency distribution of 0 value of night pixels in 2017
分组 频数 频次 频率占比/%
[12, 22) 10 572 0.001 3 0.13
[22, 32) 617 292 0.077 7 7.77
[32, 42) 2 877 563 0.362 1 36.21
[42, 52) 2 955 995 0.372 0 37.20
[52, 62) 984 602 0.123 9 12.39
[62, 72) 337 720 0.042 5 4.25
[72, 82) 161 548 0.020 3 2.03
[82, 92) 1 108 0.000 1 0.01
Tab.2  Frequency table of daytime pixel 0 value in the first quarter of 2017
分组 频数 频次 频率占比/%
[21, 29) 103 402 0.013 0 1.30
[29, 37) 1 964 503 0.247 2 24.72
[37, 45) 1 835 778 0.231 0 23.10
[45, 53) 1 354 006 0.170 4 17.04
[53, 61) 1 522 202 0.191 6 19.16
[61, 69) 1 084 127 0.136 4 13.64
[69, 77) 81 586 0.010 3 1.03
[77, 85) 796 0.000 1 0.01
Tab.3  Frequency table of daytime pixel 0 value in the second quarter of 2017
分组 频数 频次 频率占比/%
[15, 24) 146 725 0.018 5 1.85
[24, 33) 1 619 402 0.203 8 20.38
[33, 42) 1 732 082 0.218 0 21.80
[42, 51) 2 066 245 0.260 0 26.00
[51, 60) 1 785 154 0.224 6 22.46
[60, 69) 507 425 0.063 9 6.39
[69, 78) 88 382 0.011 1 1.11
[78, 87) 985 0.000 1 0.01
Tab.4  Frequency table of day pixel 0 value in the third quarter of 2017
分组 频数 频次 频率/%
[7, 18) 322 566 0.040 6 4.06
[18, 29) 2 269 339 0.285 6 28.56
[29, 40) 3 434 661 0.432 2 43.22
[40, 51) 1 179 477 0.148 4 14.84
[51, 62) 368 578 0.046 4 4.64
[62, 73) 237 699 0.029 9 2.99
[73, 84) 133 716 0.016 8 1.68
[84, 95) 364 0 0.00
Tab.5  Frequency table of daytime pixel 0 value in the fourth quarter of 2017
Fig.4  MOD11A1 images during the day on July 22, 2017
Fig.5  MOD11A1 images during the day on August 7, 2017
Fig.6  MOD11A1 images during the day on December 7, 2017
Fig.7  MOD11A1 images during the day on December 22, 2017
日序 计数 总和 面积/km2 有效率/%
203 2 531 348 378 405 182.57 21.50
202 2 368 814 278 405 182.57 50.24
201 2 423 193 694 405 182.57 11.95
200 2 545 753 663 405 182.57 46.50
199 2 718 665 682 405 182.57 41.07
198 2 653 974 347 405 182.57 60.12
197 2 978 1 255 053 405 182.57 77.44
196 2 838 1 320 322 405 182.57 81.46
195 2 415 1 057 740 405 182.57 65.26
194 2 974 1 308 302 405 182.57 80.72
193 2 759 1 375 674 405 182.57 84.88
192 3 222 1 523 888 405 182.57 94.02
191 2 907 1 429 619 405 182.57 88.21
190 3 220 1 407 309 405 182.57 86.83
189 2 853 731 947 405 182.57 45.16
188 3 075 876 454 405 182.57 54.08
Tab.6  The daytime pixel efficiency of the 2017 Great heat and 15 days before the Heavy snow in Gansu Province
时序 计数 总和 面积/km2 有效率/%
219 2 855 601 287 405 182.57 37.10
218 1 901 33 086 405 182.57 2.04
217 2 952 779 269 405 182.57 48.08
216 2 948 1 201 664 405 182.57 74.14
215 2 774 1 385 533 405 182.57 85.49
214 2 767 1 160 029 405 182.57 71.57
213 2 632 401 541 405 182.57 24.78
212 2 205 695 001 405 182.57 42.88
211 2 806 1 260 641 405 182.57 77.78
210 3 151 1 248 408 405 182.57 77.03
209 3 239 923 336 405 182.57 56.97
208 3 155 528 727 405 182.57 32.62
207 2 371 213 090 405 182.57 13.15
206 3 261 969 773 405 182.57 59.84
205 2 648 818 067 405 182.57 50.48
204 2 231 400 203 405 182.57 24.69
Tab.7  The daytime pixel efficiency of the 2017 autumn begins and 15 days before the autumn begins in Gansu Province
日序 计数 总和 面积/km2 有效率/%
341 1 588 1 080 286 405 182.57 66.65
340 1 767 1 348 375 405 182.57 83.20
339 1 809 985 589 405 182.57 60.81
338 1 917 1 497 206 405 182.57 92.38
337 1 950 1 220 635 405 182.57 75.31
336 1 859 824 622 405 182.57 50.88
335 1 711 954 975 405 182.57 58.92
334 1 906 1 202 159 405 182.57 74.17
333 1 697 630 519 405 182.57 38.90
332 1 877 708 268 405 182.57 43.70
331 1 705 1 119 378 405 182.57 69.07
330 1 803 1 076 381 405 182.57 66.41
329 1 866 1 509 007 405 182.57 93.11
328 1 642 1 180 172 405 182.57 72.82
327 1 906 964 057 405 182.57 59.48
326 1 763 640 681 405 182.57 39.53
Tab.8  The daytime pixel efficiency of the 2017 Heavy snow and 15 days before the Heavy snow in Gansu Province
日序 计数 总和 面积/km2 有效率/%
356 1 715 929 390 405 182.57 57.34
355 2 011 1 182 920 405 182.57 72.99
354 1 902 1 537 141 405 182.57 94.84
353 1 810 1 301 081 405 182.57 80.28
352 1 822 1 065 853 405 182.57 65.76
351 1 631 841 357 405 182.57 51.91
350 1 904 1 022 746 405 182.57 63.10
349 2 015 854 672 405 182.57 52.73
348 1 746 190 581 405 182.57 11.76
347 1 886 395 101 405 182.57 24.38
346 1 841 854 947 405 182.57 52.75
345 1 860 853 712 405 182.57 52.67
344 1 752 1 131 642 405 182.57 69.82
343 1 736 1 211 673 405 182.57 74.76
342 1 774 549 763 405 182.57 33.92
341 1 588 1 080 286 405 182.57 66.65
Tab.9  The daytime pixel efficiency of the 2017 winter solstice and 15 days before the winter solstice in Gansu Province
Fig.8  Image compensation of Great heat solar terms in 2017 (daytime)
Fig.9  Image compensation of Autumn begins solar terms in 2017 (daytime)
Fig.10  Image compensation of Heavy snow solar terms in 2017 (daytime)
Fig.11  Image compensation of Winter solstice solar terms in 2017 (daytime)
[1] 张强. 基于时—空—谱深度特征学习的遥感影像缺失信息重建方法研究[D]. 武汉:武汉大学, 2019.
[1] Zhang Q. Research on missing information reconstruction of remote sensing imagery employing temporal-spatial-spectral deep feature learning[D]. Wuhan:Wuhan University, 2019.
[2] 杨铁利, 何全军. MODIS数据的云检测处理[J]. 鞍山科技大学学报, 2006(2):162-166.
[2] Yang T L, He Q J. Cloud detection in MODIS data[J]. Journal of Anshan University of Science and Technology, 2006(2):162-166.
[3] 王润, 刘洪斌, 宫瑞. 多光谱遥感图像去云方法[J]. 计算机与现代化, 2005(6):13-15.
[3] Wang R, Liu H B, Gong R. A method of removal cloud of multispectral satellite image[J]. Jisuanji yu Xiandaihua, 2005(6):13-15.
[4] Vanegas F, Bratanov D, Powell K, et al. A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data.[J]. Sensors, 2018, 18(1):260.
doi: 10.3390/s18010260 url: http://www.mdpi.com/1424-8220/18/1/260
[5] 王树根, 郭泽金, 李德仁. 彩色航空影像上阴影区域信息补偿的方法[J]. 武汉大学学报(信息科学版), 2003, 28(5):514-516.
[5] Wang S G, Guo Z J, Li D R. Shadow com-pensation of color aerial images[J]. Geomatics and Information Science of Wuhan Uinversity, 2003, 28(5):514-516.
[6] Voicu L I, Myler H R, Weeks A R. Practical considerations on color image enhancement using homomorphic filtering[J]. Journal of Electronic Imaging, 1997, 6(1):108-113.
doi: 10.1117/12.251157 url: http://electronicimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/12.251157
[7] Zamudio J A, Atkison W W. Analysis of avris data for spectral discrimination of geologic materials in the dolly varden mountains[C]// The Second A VIRIS Conference,Pasadena, 1990.
[8] 马翱慧. MODIS海洋叶绿素浓度产品缺失数据重构方法研究[D]. 北京:中国地质大学(北京),2013.
[8] Ma A H. Study on reconstruction methods of missing data in MODIS sea surface Chlorophyll data products[D]. Beijing:China University of Geosciences (Beijing),2013.
[9] 马翱慧, 刘湘南, 刘美玲, 等. 基于DIEOF方法重构海表叶绿素a遥感缺失数据[J]. 海洋通报, 2014, 33(5):576-583.
[9] Ma A H, Liu X N, et al.Liu M L. Reconstruction of missing remote sensing data of sea surface chlorophyll-a using DIEOF[J]. Marine Science Bulletin, 2014, 33(5):576-583.
[10] 王蜜蜂. 遥感影像的阴影检测与补偿方法研究[D]. 西安:西安电子科技大学, 2011.
[10] Wang M F. Research on shadow detection and compensation in remote sensing images[D]. Xi’an:Xidian University, 2011.
[11] 马轩龙, 李文娟, 陈全功. 基于GIS与草原综合顺序分类法对甘肃省草地类型的划分初探[J]. 草业科学, 2009, 26(5):7-13.
[11] Ma X L, Li W J, Chen Q G. Preliminary exploration of native grassland classification of Gansu Province based on GIS and comprehensive and sequential grassland classification method[J]. Pratacultural Science, 2009, 26(5):7-13.
[12] 郭婧, 柳小妮, 任正超. 基于AMMRR插值法的草地综合顺序分类研究——以甘肃省为例[J]. 草业科学, 2012, 29(3):384-391.
[12] Guo J, Liu X N, Ren Z C. IOCSG based grassland classification by AMMRR Interpolation—A case study in Gansu Province[J]. Pratacultural Science, 2012, 29(3):384-391.
[13] 余文豪. 基于深度学习的高分SAR图像建筑分割算法研究[D]. 上海:上海交通大学, 2019.
[13] Yu W H, Research on building segmentation algorithm for high resolution sar image based on deep learning[D]. Shanghai:Shanghai Jiao Tong University, 2019.
[14] 巩志. 基于卫星遥感的青藏高原湖冰物候研究[D]. 杭州:杭州师范大学, 2018.
[14] Gong Z. Study on Lake Ice phenology in Qinghai-Tibetan Plateau based on satellite remote sensing[D]. Hangzhou:Hangzhou Normal University, 2018
[15] 张苏. 二十四节气与物候[N/OL]. 农民日报. 2016-12-09(005).
[15] Zhang S. 24 solar terms and phenology[N/OL]. Farmers’ Daily. 2016-12-09(005).
[1] WANG Yating, ZHU Changming, ZHANG Tao, ZHANG Xin, SHI Zhiyu. Remote sensing monitoring and analysis of the vegetation phenological characteristics of the Qinling Mountains-Huanghuai Plain ecotone from 2002 to 2020[J]. Remote Sensing for Natural Resources, 2022, 34(4): 225-234.
[2] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[3] Yunpeng YAN, Hui XU, Gang LIU, Jianyu LIU. Analysis of the variations of the lake ice phenology in the Pangong Lake area from 2013 to 2017: Remote sensing survey of the cryosphere in the high altitude and alpine region, West China(Ⅰ)[J]. Remote Sensing for Land & Resources, 2019, 31(3): 209-215.
[4] Hongzhu HAN, Jianjun BAI, Bo ZHANG, Gao MA. Spatial-temporal characteristics of vegetation phenology in Shaanxi Province based on MODIS time series[J]. Remote Sensing for Land & Resources, 2018, 30(4): 125-131.
[5] Xuehui HOU, Xueyan SUI, Huimin YAO, Shouzhen LIANG, Meng WANG. Study of the growth condition of winter wheat in Shandong Province based on phenology[J]. Remote Sensing for Land & Resources, 2018, 30(2): 171-177.
[6] ZHAO Qingqing, JIANG Luguang, LI Wenye, FENG Zhiming. Spatial-temporal pattern change of winter wheat area in northwest Shandong Province during 2000―2014[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 173-180.
[7] LIANG Zhi-hua. A Study of Algorithm of Geometric Processing for MODIS Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 8-12.
[8] XUE Cun-Fang, ZHANG Wei. THE DYNAMIC VARIATION OF GRASSLAND VEGETATION
DEGENERATION BASED ON REMOTE SENSING MODIS DATA
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(2): 97-101.
[9] LIAO Cheng-Hao, LIU Xue-Hua. AN EFFECTIVENESS COMPARISON BETWEEN WATER BODY INDICES BASED ON MODIS DATA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(4): 22-26.
[10] JIANG Geng-ming, NIU Zheng, RUAN Wei-li, WANG Chang-yao . CLOUD-FREE COMPOSITION OF MODIS DATA AND ALGORITHM REALIZATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(2): 11-15,79.
[11] CHEN Jin-song, TIAN Qin-jiuSHAO Yun, ZHU Bo-qin, HUI Fen-ming, WANG Wei-min. AN ANALYSIS OF THE QUALITY AND APPLICATION OF THE SZ-3 CMODIS DATA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(1): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech