Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 75-84     DOI: 10.6046/gtzyyg.2020289
|
Buildings extraction of GF-2 remote sensing image based on multi-layer perception network
LU Qi1(), QIN Jun1, YAO Xuedong2, WU Yanlan1,3(), ZHU Haochen1
1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan 430072, China
3. Anhui Engineering Research Center for Geographical Information Intelligent Technology, Hefei 230601, China
Download: PDF(9566 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The task of extracting buildings with high-resolution remote sensing image plays an important role in urban planning and urbanization. In view of the problems of existing deep learning extraction methods, for example, the shallow features can’t been used effectively and small target information is easily lost, this paper proposes a multi-level perceptual network. This network uses dense connection mechanism to fully extract feature information, and constructs parallel structure to retain spatial information of different feature resolution and enhance feature information of different depth and scale in order to reduce the loss of detail feature. At the same time, the ASPP module is used to obtain the information of different receptive fields and extract the deep architectural features at different scales. The experimental results show that the overall accuracy of the proposed method is 97.19%, intersection over union is 74.33% and theF1 score is 85.43% in the buildings extraction of GF-2 remote sensing image, all of which are higher than those of the traditional method and other deep learning methods. In addition, buildings with multi-source remote sensing images still have good extraction effect, which reflects the practicability of the method presented in this paper.

Keywords deep learning      remote sensing images      building extraction      multiscale feature fusion     
ZTFLH:  TP79  
Corresponding Authors: WU Yanlan     E-mail: luqi9507@163.com;wuyanlan@ahu.edu.cn
Issue Date: 21 July 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi LU
Jun QIN
Xuedong YAO
Yanlan WU
Haochen ZHU
Cite this article:   
Qi LU,Jun QIN,Xuedong YAO, et al. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020289     OR     https://www.gtzyyg.com/EN/Y2021/V33/I2/75
Fig.1  Flow chart of network structure
Fig.2  A denseblock with three convolutional layers
Fig.3  Atrous spatial pyramid pooling
Fig.4  Three feature fusion methods
Fig.5  Division scope of training area and testing area in Hefei
用途 样本制作及模型测试 泛化性验证
传感器类型
地理位置
GF2-PMS2
合肥市
GF2-PMS1
天津市
GF1-PMS1
铜陵市
2
2019-03-11
E118.4,N31.3
GF6-PMS
合肥市
2
2020-05-04
E117.6,N31.3
SV1
贵州市
空间分辨率/m
获取时间
中心坐标/(°)
1
2017-01-26
E117.3,N31.9
1
2019-04-15
E117.4,N39.0
0.5
2019-12-25
E105.3,N25.9
Tab.1  Image parameters
类别 合肥示例1 合肥示例2 天津示例1 天津示例2
影像
标签
Tab.2  image and label data of building
Fig.6  Result display
区域 OA IOU F1
合肥区域 96.52 72.60 84.45
天津区域 97.86 76.06 86.40
平均精度 97.19 74.33 85.43
Tab.3  Test accuracy(%)
方法名称 OA IOU F1
本文方法 97.19 74.33 85.43
最大似然法 58.68 35.13 50.17
支持向量机 84.03 45.47 62.46
面向对象 67.40 35.13 50.17
Tab.4  Comparison of extraction accuracy with traditional methods(%)
区域 遥感影像 标签 本文方法 最大似然法 支持向量机 面向对象
A
B
C
D
Tab.5  Comparison of extraction results with traditional methods
方法名称 OA IOU F1
本文方法 97.19 74.33 85.43
DenseNet 88.29 55.39 70.01
DeeplabV3+ 91.01 70.01 82.71
BiseNet 89.55 54.83 72.40
Tab.6  Comparison of extraction accuracy with classic deep learning network model(%)
区域 遥感影像 标签 本文方法 DenseNet DeeplabV3+ BiseNet
A
B
C
D
Tab.7  Comparison of extraction results with classic deep learning network model
Fig.7-1  Multisource remote sensing image test results
Fig.7-2  Multisource remote sensing image test results
影像类型 OA IOU F1
GF-1 82.75 60.32 75.25
GF-6 90.96 87.81 93.51
SV1 95.93 51.95 68.37
Tab.8  Test accuracy(%)
[1] 于嘉. 基于特征提取的北方乡村景观建筑物层次化布局研究[J]. 科技通报, 2019, 35(1):147-150.
[1] Yu J. Research on hierarchical distribution of buildings in northern rural landscape based on feature extraction[J]. Bulletin of Science and Technology, 2019, 35(1):147-150.
[2] Luis M, Luis M P, Erick M, et al. Novel unsupervised classification of collapsed buildings using satellite imagery,hazard scenarios and fragility functions[J]. Remote Sensing, 2018, 10(2):296.
doi: 10.3390/rs10020296 url: http://www.mdpi.com/2072-4292/10/2/296
[3] 刘焕军, 杨昊轩, 徐梦园, 等. 基于裸土期多时相遥感影像特征及最大似然法的土壤分类[J]. 农业工程学报, 2018, 34(14):132-139.
[3] Liu H J, Yang H X, Xu M Y. Soil classification based on maximum likelihood method and features of multitemporal remote sensing images in bare soil period[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14):132-139.
[4] 张浩, 赵云胜, 陈冠宇, 等. 基于支持向量机的遥感图像建筑物识别与分类方法研究[J]. 地质科技情报, 2016(6):200-205.
[4] Zhang H, Zhao Y S, Chen G Y. Remote sensing image building recognition and classification based on the support vector machine[J]. Geological Science and Technology Information, 2016(6):200-205.
[5] 李强, 张景发. 基于CART决策树提取高分辨率遥感影像建筑物信息[J]. 地震, 2013, 33(2):96-102.
[5] Li Q, Zhang J F. Extraction of building information from high resolution images based on CART decision tree[J]. Earthquake, 2013, 33(2):96-102.
[6] 于书媛, 骆佳骥, 杨源源. 基于高分卫星遥感影像的城市建筑物提取研究[J]. 华南地震, 2019, 39(2):26-33.
[6] Yu S Y, Luo J J, Yang Y Y. Research on extraction of urban buildings based on high satellite remote sensing images[J]. South China Journal of Seismology, 2019, 39(2):26-33
[7] 王崇倡, 武文波, 张建平. 基于BP神经网络的遥感影像分类方法[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(1):32-35.
[7] Wang C C, Wu W B, Zhang J P. Classification for remote sensing image based on BP neural network[J]. Journal of Liaoning Technical University(Natural Science), 2009, 28(1):32-35.
[8] Shackelford A K, Davis C H. A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(10):2354-2363.
[9] Hofmann P. Detecting informal settlements from IKONOS image data using methods of object oriented image analysis:An example from Cape Town (South Africa)[M]. Jürgens C.Remote Sensing of Urban Areas/Fernerkundung in Urbanen Räumen, 2001:41-42.
[10] 陶超, 谭毅华, 蔡华杰, 等. 面向对象的高分辨率遥感影像城区建筑物分级提取方法[J]. 测绘学报, 2010, 39(1):39-45.
[10] Tao C, Tan Y H, Cai H J, et al. Objectoriented method of hierarchical urban building extraction from high-resolution remotesensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(1):39-45.
[11] 邓瑞, 林金朝, 杨宏志. 基于深度学习的建筑物识别[J]. 重庆工商大学学报(自然科学版), 2019(4):17-22.
[11] Deng R, Lin J C, Yang H Z. Building identification based on deep learning[J]. Chongqing Technology & Business University(Natural Science), 2019(4):17-22.
[12] Alshehhi R, Marpu P R, Woon W L, et al. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2017, 130:139-149.
[13] Mnih V. Machine learning for aerial image labeling[D]. Toronto:University of Toronto, 2013.
[14] 杨建宇, 周振旭, 杜贞容, 等. 基于SegNet语义模型的高分辨率遥感影像农村建设用地提取[J]. 农业工程学报, 2019, 35(5):259-266.
[14] Yang J Y, Zhou Z X, Du Z R, et al. Rural construction land extraction from high spatial resolution remote sensing image based on SegNet semantic segmentation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5):259-266.
[15] 吕道双. 一种改进型U-Net遥感影像建筑物提取[J]. 测绘, 2019, 42(5):231-234.
[15] Lyu D S. An improved U-Net remote sensing image building extraction[J]. Surveying Mapping, 2019, 42(5):231-234.
[16] Yi Y, Zhang Z, Zhang W, et al. Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network[J]. Remote Sensing, 2019, 11(15):1774.
doi: 10.3390/rs11151774 url: https://www.mdpi.com/2072-4292/11/15/1774
[17] Huang Z, Cheng G, Wang H, et al. Building extraction from multi-source remote sensing images via deep deconvolution neural networks[C]// Geoscience & Remote Sensing Symposium.IEEE, 2016.
[18] Feng W, Sui H, Hua L, et al. Improved deep fully convolutional network with superpixel-based conditional random fields for building extraction[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019.
[19] Liu P, Liu X, Liu M, et al. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network[J]. Remote Sensing, 2019, 11(7):830.
doi: 10.3390/rs11070830 url: https://www.mdpi.com/2072-4292/11/7/830
[20] 徐胜军, 欧阳朴衍, 郭学源. 多尺度特征融合空洞卷积ResNet遥感图像建筑物分割[J]. 光学精密工程, 2020, 28(7):1588-1599.
[20] Xu S J, Ouyang P Y, Guo X Y. Building segmentation in remote sensing image based on multiscale-feature fusion dilated convolution resnet[J]. Optics and Precision Engineering, 2020, 28(7):1588-1599.
[21] Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).arXiv, 2019.
[22] Huang J, Zhu Z, Huang G. Multi-stage HRNet:Multiple stage high-resolution network for human pose estimation[EB/OL]. ( 2019- 10- 14)[2021- 01- 07]. http://arxiv.org/abs/1910.05901.
url: http://arxiv.org/abs/1910.05901
[23] Yang H, Wu P, Yao X, et al. Building extraction in very high resolution imagery by dense-attention networks[J]. Remote Sensing, 2018, 10(11):1768.
doi: 10.3390/rs10111768 url: http://www.mdpi.com/2072-4292/10/11/1768
[24] 蒋应锋, 张桦, 薛彦兵, 等. 一种新的多尺度深度学习图像语义理解方法研究[J]. 光电子·激光, 2016(2):224-230.
[24] Jiang Y F, Zhang H, Xue Y B, et al. A new multiscale image semantic understanding method based on deep learning[J]. Journal of Optoelectronics Laser, 2016(2):224-230.
[25] Huang G, Liu Z, Laurens V D M, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Honolulu:IEEE, 2017:2261-2269
[26] Yao X, Yang H, Wu Y, et al. Land use classification of the deep convolutional neural network method reducing the loss of spatial features[J]. Sensors, 2019, 19(12):2792.
doi: 10.3390/s19122792 url: https://www.mdpi.com/1424-8220/19/12/2792
[27] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Computer Vision-ECCV 2018.Munich:Springer, 2018:833-851.
[28] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184 url: http://ieeexplore.ieee.org/document/7913730/
[29] Awrangjeb M, Fraser C S. An automatic and threshold-free performance evaluation system for building extraction techniques from airborne LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7(10):4184-4198.
[30] Yu C, Wang J, Peng C, et al. BiSeNet:Bilateral segmentation network for real-time semantic segmentation[EB/OL]. ( 2018- 08- 02) [2021- 01- 07]. http://arxiv.org/abs/1808.00897.
url: http://arxiv.org/abs/1808.00897
[31] 杜一民, 戴激光. 利用高程信息结合彩色遥感航空影像提取建筑物目标[J]. 测绘与空间地理信息, 2019(7):125-127.
[31] Du Y M, Dai J G. Using elevation information to combine color remote sensing aerial images extraction of building targets[J]. Geomatics & Spatial information Technology, 2019(7):125-127.
[1] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[2] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[3] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[4] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[5] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[6] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[7] ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 213-221.
[8] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[9] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[10] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[11] TAN Hai, ZHANG Rongjun, FAN Wenfeng, ZHANG Yifang, XU Hang. Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 97-104.
[12] SU Wei, LIN Yangyang, YUE Wen, CHEN Yingbiao. Identification of mariculture areas in Guangdong Province and remote sensing monitoring of their spatial and temporal changes based on the U-Net convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(4): 33-41.
[13] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[14] ERPAN Anwar, MAMAT Sawut, MAIHEMUTI Balati. Recognition of cotton distribution based on GF-2 images and Unet model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 242-250.
[15] SUN Yu, HUANG Liang, ZHAO Junsan, CHANG Jun, CHEN Pengdi, CHENG Feifei. High spatial resolution automatic detection of bridges with high spatial resolution remote sensing images based on random erasure and YOLOv4[J]. Remote Sensing for Natural Resources, 2022, 34(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech