Please wait a minute...
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 248-255     DOI: 10.6046/gtzyyg.2020238
Research on smartphone based UAV low-altitude oblique photogrammetry system and its applications
BI Weihua1,3(), ZHAO Xingtao2, YANG Huachao3(), BIAN Hefang3, ZHANG Qiuzhao3
1. Wanbei Coal & Electricity Co. Ltd., Suzhou 234002, China;
2. Beijing Dixin Technology Co., Ltd., Beijing 100086, China
3. School of Environment & Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
Download: PDF(5599 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

In order to facilitate the low-cost, ultra-light weight and easier operation, the authors constructed a smartphone based unmanned aerial vehicle (UAV) low altitude oblique photogrammetric system by integrating DJI Phantom 4 UAV flight platform with good flight traits and Nokia 808 PureView mobile phones with good image-taking functions. In this system, relative functions of multi-camera imaging system with mobile phones were optimized, and the module design method was adopted for the system which includes the measurement of improving image quality, and the design of flight control module used for automatically image-taking control developed by open source flight control system, the design of the POS module and some other means. The integrating mode by the multi-camera system adopted as payload and flight platform was discussed, and then the working flow of the integrated system was concluded. The system was used for different applicable fields, i.e., real estate surveying, open-pit mine monitoring, and 3D reconstruction of urban buildings. The application results assessed by check points measured with field work and manual vision inspect indicate that the real-world 3D model has better texture quality, and the digital survey and mapping products, real-world 3D model and digital linear graph as well as some other means have higher geometric accuracy with centimeter level. The proposed system will be very important for boosting the development of UAV low altitude oblique photogrammetry in terms of practical demands.

Keywords unmanned aerial vehicle      flight control system      smartphone      oblique photogrammetry      3D reconstruction     
ZTFLH:  P239  
Corresponding Authors: YANG Huachao     E-mail:;
Issue Date: 21 July 2021
E-mail this article
E-mail Alert
Articles by authors
Weihua BI
Xingtao ZHAO
Huachao YANG
Hefang BIAN
Qiuzhao ZHANG
Cite this article:   
Weihua BI,Xingtao ZHAO,Huachao YANG, et al. Research on smartphone based UAV low-altitude oblique photogrammetry system and its applications[J]. Remote Sensing for Land & Resources, 2021, 33(2): 248-255.
URL:     OR
Fig.1  Structural diagram of the UAV based low altitude oblique photogrammetry with smartphones
成像模式 镜头参数 传感器参数
焦距/mm 光圈 传感器尺寸/英寸 像素大小/μm 图像分辨率/像素
1 8.02(26 mm等效) F/2.4 1/1.2(10.54 mm×7.91 mm) 1.4 7 728×5 368(4 100万)
2 2.6 4 000×3 000(1 200万)
Tab.1  Sensor and lens specifications for built-in camera of Nokia 808 PureView
Fig.2  Image results before and after adding ND filter
Fig.3  Reconstructed 3D model of the same object by two different imaging modes
Fig.4  Structural diagram of the total system and its main modules
Fig.5  Work flow of the system
Fig.6  Boundaries of research regions and the distribution of GCPs and CPs
项目 研究区1 研究区2 研究区3
飞行航高(相对)/m 42 93 112
航向/旁向重叠度/% 85/80 85/80 85/80
平均地面分辨率/cm 1.2 2.3 3.1
影像数量/张 6 200 53 214 876
像控点和检查点数量/个 15; 6 108; 24 8; 6
房角平面检查点数量/个 48
地形高程检查点数量/个 35
拍摄日期 2019年6月 2019年9月 2019年12月
Tab.2  Photogrammetric parameters and the amount of GCPs and CPs
Fig.7  Real-world 3D model of each research region and its local details
Fig.8  Real estate map of research region 1 and the topography map of research region 3
研究区 检查点 房角检查点 高程检查点
mXY mZ mZ mXY
1 3.2 4.2 3.9
2 6.6 7.1
3 8.1 10.7 12.6
Tab.3  Precision statistics for each research region (cm)
[1] 余忠迪, 李辉, 巴芳, 等. 基于消费级无人机的城市三维建模[J]. 国土资源遥感, 2018, 30(2):67-72.doi: 10.6046/gtzyyg.2018.02.09.
doi: 10.6046/gtzyyg.2018.02.09
[1] Yu Z D, Li H, Ba F, et al. 3D city model construction based on a consumer-grade UAV[J]. Remote Sensing for Land and Resources, 2018, 30(2):67-72.doi: 10.6046/gtzyyg.2018.02.09.
doi: 10.6046/gtzyyg.2018.02.09
[2] 李安福, 曾政祥. 浅析国内倾斜摄影技术的发展[J]. 测绘与空间地理信息, 2014, 37(9):57-62.
[2] Li A F, Zeng Z X. The analysis of the development of oblique photography technique in China[J]. Geomatics and Spatial Information Technology, 2014, 37(9):57-62.
[3] 毕凯, 李英成, 丁晓波, 等. 轻小型无人机航摄技术现状及发展趋势[J]. 测绘通报, 2015(3):27-31.
[3] Bi K, Li Y C, Ding X B, et al. Aerial photogrammetric technology of light small UAV:Status and trend of development[J]. Bulletin of Surveying and Mapping, 2015(3):27-31.
[4] Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing 2014, 92(2):79-97.
doi: 10.1016/j.isprsjprs.2014.02.013 url:
[5] Takeuchi K, Kennelly P J. ISeismometer:A geoscientific iPhone application[J]. Computers & Geosciences, 2010, 36(4):573-575.
doi: 10.1016/j.cageo.2009.09.012 url:
[6] Wang T H, Han W T, Zhang M F, et al. Unmanned aerial vehicle-borne sensor system for atmosphere-particulate-matter measurements:Design and experiments[J]. Sensors, 2020, 20(1),57.
doi: 10.3390/s20010057 url:
[7] Slawomir P, Arkadiusz G, Piotr L, et al. Developing of low-cost air pollution sensor:Measurements with the unmanned aerial vehicles in Poland[J]. Sensors, 2020, 20(1),58.
doi: 10.3390/s20010058 url:
[8] Zhang Y H, Peng C, Mou D, et al. An adaptive filtering approach based on the dynamic variance model for reducing MEMS gyroscope random error[J]. Sensors, 2018, 18(11):3943-3957.
doi: 10.3390/s18113943 url:
[9] Chen Z H, Zhu Q C, Soh Y C. Smartphone inertial sensor based indoor localization and tracking with iBeacon corrections[J]. IEEE Transactions on Industrial Informatics, 2016, 12(4):1540-1549.
doi: 10.1109/TII.2016.2579265 url:
[10] Kim J, Lee S K, Ahn H Y, et al. Feasibility of employing a smartphone as the payload in a photogrammetric UAV system[J]. ISPRS Journal of Photogrammetry and Remote Sensing 2013, 79(3):1-18.
doi: 10.1016/j.isprsjprs.2013.02.001 url:
[11] Yang K, Yang G Y, Fu H I. Research of control system for plant protection UAV based on Pixhawk[J]. Procedia Computer Science, 2020, 166:371-375.
doi: 10.1016/j.procs.2020.02.082 url:
[12] Furukawa Y, Ponce J. Accurate,dense and robust multi-view Stereopsis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8):1362-1376.
doi: 10.1109/TPAMI.2009.161 url:
[1] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[2] XIONG Yujiu, ZHAO Shaohua, YAN Chunhua, QIU Gouyu, SUN Hua, WANG Yanlin, QIN Longjun. A comparative study of methods for monitoring and assessing urban green space resources at multiple scales[J]. Remote Sensing for Land & Resources, 2021, 33(1): 54-62.
[3] Zhiwei LIN, Weihao TU, Jiahang HUANG, Qilu DING, Zhengwen ZHOU, Jinfu LIU. Tree species recognition of UAV aerial images based on FC-DenseNet[J]. Remote Sensing for Land & Resources, 2019, 31(3): 225-233.
[4] Linlin LIANG, Liming JIANG, Zhiwei ZHOU, Yuxing CHEN, Yafei SUN. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land & Resources, 2019, 31(2): 180-186.
[5] Xiang WANG, Xinxin WANG, Xiu SU, Qinghui MENG, Dejun ZOU, Xiaodong YI, Lin WANG, Shiyong WEN, Jianhua ZHAO. Thermal discharge monitoring of nuclear power plant with aerial remote sensing technology using a UAV platform: Take Hongyanhe Nuclear Power Plant,Liaoning Province,as example[J]. Remote Sensing for Land & Resources, 2018, 30(4): 182-186.
[6] Changkui SUN, Shanlei LIU, Shengyao WANG, Chao CHEN, Quanfei SHEN, Shanqiu SHI, Wei WANG. Application of UAV in construction of smart city[J]. Remote Sensing for Land & Resources, 2018, 30(4): 8-12.
[7] Liyan REN, Yingcheng LI, Yanli XUE, Xiaobo DING, Hao WU. Development and application of the UAV flying supervisory system based on Beidou technology[J]. Remote Sensing for Land & Resources, 2018, 30(2): 238-242.
[8] Zhongdi YU, Hui LI, Fang BA, Zhaoyang WANG. 3D city model construction based on a consumer-grade UAV[J]. Remote Sensing for Land & Resources, 2018, 30(2): 67-72.
[9] YANG Rujun, XIE Guoxue. A discussion on domestic satellite data in land and resources supervision:Taking Guangxi Zhuang Autonomous Region as example[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 52-57.
[10] XUE Wu, MA Yongzheng, ZHAO Ling, MO Delin. UAV-based rural homestead ownership determination[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 124-127.
[11] ZHA Dajian, LI Lelin, JIANG Wangshou, HAN Yongshun. Expanding research on CSG in 3D reconstruction from LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 35-42.
[12] ZHOU Hanghang, ZOU Zhengrong, ZHANG Yunsheng, ZHENG Te. Facade extraction from oblique point cloud considering geometrical and color information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 43-48.
[13] LU Heng, FU Xiao, LIU Chao, GUO Jiawei, GOU Si, LIU Tiegang. Study of method for fast segmentation based on UAV image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 72-78.
[14] DING Leilong, LI Qiangzi, DU Xin, TIAN Yichen, YUAN Chao. Vegetation extraction method based on color indices from UAV images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 78-86.
[15] HE Yinan, GENG Juan, QIN Jun, LIU Chen, YANG Hui. Integration of Forstner and NCC constraint for UAV image registration[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 48-54.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech