Please wait a minute...
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (4) : 192-199     DOI: 10.6046/zrzyyg.2020348
An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images
LIU Zhizhong1(), SONG Yingxu2(), YE Runqing3
1. China Railway 11th Bureau Group Fourth Engineering Co., Ltd., Wuhan 100855, China
2. Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, School of Information Engineering, East China University of Technology, Nanchang 330013, China
3. Wuhan Center of China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China
Download: PDF(3965 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

A rainstorm struck northeast Chongqing from August 31 to September 2, 2014. It triggered extensive landslides and resulted in casualties and serious economic losses. To learn the condition of the landslides induced by the rainstorm and analyze the relationship between the landslides and rainfall, this study obtains the distribution of the landslides through the interpretation of high-resolution satellite remote sensing images before and after the rainstorm using RS and GIS techniques. It can be concluded that complicated geological tectonic conditions and corresponding unique tectonic erosion landform pattern make northeast Chongqing become the center of the rainstorm and also lead to the frequent occurrence of rainfall-triggered landslides in this area. Landslides will continuously occur when the maximum daily rainfall and accumulated rainfall exceed 80 mm and 160 mm, respectively, and extensive landslides will occur when the maximum daily rainfall and accumulated rainfall exceed 100 mm and 210 mm, respectively. Furthermore, landslides are the most liable to occur in windward slopes with a gradient of about 25°. Therefore, the regional topography should be taken into account in the analysis and prediction of rainfall-induced geological disasters to improve the accuracy of spatial and temporal prediction and analysis of geological hazards.

Keywords extreme rainstorm      landslide      remote sensing image interpretation      northeast Chongqing     
ZTFLH:  TP79  
Corresponding Authors: SONG Yingxu     E-mail:;
Issue Date: 23 December 2021
E-mail this article
E-mail Alert
Articles by authors
Zhizhong LIU
Yingxu SONG
Runqing YE
Cite this article:   
Zhizhong LIU,Yingxu SONG,Runqing YE. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 192-199.
URL:     OR
降雨时间 累计降雨
巫溪县 8月31日—9月2日 233.3 214.4
奉节县 8月26日—9月2日 101.8 80.5
云阳县 8月31日—9月2日 129.2 92.5
开州区 8月31日—9月2日 189.3 179.3
万州区 8月31日—9月2日 60.2 35.7
Tab.1  Monitoring data of extreme rainfall on August 31, 2014 of northeast Chongqing
Fig.1  Precipitation distribution of northeast Chongqing on August 31,2014
Fig.2  Sketch map of rainstorm formation in northeast Chongqing under the control of geological structure
Fig.3  Remote sensing interpretation distribution of landslides induced by extreme rainfall on August 31
Fig.4  Remote sensing images before and after Guiba landslide in Fengjie County
Fig.5  Remote sensing images of the Xiahengdan landslide in Fengjie County on May 8,2015
Fig.6  Rainfall statistics of the August 31 rainstorm-induced landslide area in northeast Chongqing
Fig.7  Elevation analysis of rainstorm-induced landslide on August 31 in northeast Chongqing
Fig.8  Slope and aspect analysis of rainstorm-induced landslide on August 31 in northeast Chongqing
序号 滑坡 地层岩性 坡度/(°) 是否新增
1 云阳县双龙镇老药铺滑坡 J2s上沙溪庙组 25~39 新增点
2 云阳县双龙镇长兴村滑坡 J2s上沙溪庙组 35~40 新增点
3 云阳县江口镇黄沙包滑坡 T3x须家河组 30~46 新增点
4 云阳县江口镇向家坪场镇后滑坡 J2xs下沙溪庙组 21~31 新增点
5 云阳县鱼泉镇墳山梁滑坡 T2b巴东组 23~45 新增点
6 云阳县鱼泉镇小垭口滑坡 T3x须家河组 36~41 新增点
7 云阳县沙市镇肖硐滑坡 T2b巴东组 31~40 新增点
8 奉节县康乐镇杨柳坪滑坡 T2b巴东组 26~43 新增点
9 奉节县罗黄坪滑坡 J1z珍珠冲组 29~43 新增点
10 巫溪县上潢镇罗家坡滑坡 J1z珍珠冲组 29~43 新增点
Tab.2  Formation and lithology analysis of rainstorm-induced landslide on August 31 in northeast Chongqing
[1] 杨金虎, 江志红, 王鹏祥, 等. 中国年极端降水事件的时空分布特征[J]. 气候与环境研究, 2008,13(1):75-83.
[1] Yang J H, Jiang Z H, Wang P X, et al. Temporal and spatial characteristic of extreme precipitation event in China[J]. Climatic and Environmental Research, 2008,13(1):75-83.
[2] 顾西辉, 张强, 孔冬冬, 等. 中国年和季节极端降水时空特征及极值分布函数上尾部性质[J]. 地理科学, 2017,37(6):929-937.
doi: 10.13249/j.cnki.sgs.2017.06.015
[2] Gu X H, Zhang Q, Kong D D, et al. Spatiotemporal patterns of extreme precipitation distributions with annual and seasonal scales and potential impact of tropical cyclones in China[J]. Scientia Geographica Sinica, 2017,37(6):929-937.
[3] 张俊, 高雅琦, 徐卫立, 等. 长江流域极端降雨事件时空分布特征[J]. 人民长江, 2019,50(8):81-86.
[3] Zhang J, Gao Y Q, Xu W L, et al. Spatial and temporal analysis of extreme precipitation events in Yangtze River Basin[J]. Yangtze River, 2019,50(8):81-86.
[4] 王兰生, 李曰国, 詹铮. 1981年暴雨期四川盆地区岩质滑坡的发育特征[J]. 大自然探索, 1982(1):44-51.
[4] Wang L S, Li Y G, Zhan Z. Distribution of rock landslide failed in 1981 triggered by torrential rain in Sichuan Basin[J]. Discovery of Nature, 1982(1):44-51.
[5] 柳源. 滑坡临界暴雨强度[J]. 水文地质工程地质, 1998(3):43-45.
[5] Liu Y. Critical rainstorm intensity of landslide[J]. Hydrogeology and Engineering Geology, 1998(3):43-45.
[6] 黄润秋. 中国西部地区典型岩质滑坡机理研究[J]. 地球科学进展, 2004,19(3):444-450.
[6] Huang R Q. Mechanism of large scale landslides in Western China[J]. Advance in Earth Sciences, 2004,19(3):444-450.
[7] 赵鹏, 杨沛霖, 蒋莉, 等. 渝东北地区强降雨诱发地质灾害险情分析[J]. 长江科学院院报, 2017,34(10):50-56.
[7] Zhao P, Yang P L, Jiang L, et al. Situation of geologic hazards induced by heavy rainfall in northeast Chongqing[J]. Journal of Yangtze River Scientific Research Institute, 2017,34(10):50-56.
[8] 陈洁, 高子弘, 王珊珊, 等. 三峡库区航空遥感地质调查技术发展综述[J]. 国土资源遥感, 2020,32(2):1-10.doi: 10.6046/gtzyyg.2020.02.01.
doi: 10.6046/gtzyyg.2020.02.01
[8] Chen J, Gao Z H, Wang S S, et al. A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area[J]. Remote Sensing for Land and Resources, 2020,32(2):1-10.doi: 10.6046/gtzyyg.2020.02.01.
doi: 10.6046/gtzyyg.2020.02.01
[9] Mantovani F, Soeters R, Westen C V. Remote sensing techniques for landslide studies and hazard zonation in Europe[J]. Geomorphology, 1996,15:213-225.
doi: 10.1016/0169-555X(95)00071-C url:
[10] 宋英旭. 基于空天地一体化监测的滑坡风险动态评价研究[D]. 武汉:中国地质大学(武汉), 2019.
[10] Song Y X. Research on dynamic evaluation of landslide risk based on integrated air-space-ground monitoring[D]. Wuhan:China University of Geosciences(Wuhan), 2019.
[11] 文广超, 张哲玮, 肖学军, 等. 基于遥感数据的灾后滑坡信息快速提取方法[J]. 中国地质灾害与防治学报, 2020,31(2):84-90.
[11] Wen G C, Zhang Z W, Xiao X J, et al. Rapid extraction method of post-disaster landslide information based on remote sensing data[J]. The Chinese Journal of Geological Hazard and Control, 2020,31(2):84-90.
[12] Colesanti C, Wasowski J. Investigating landslides with space-borne synthetic aperture Radar (SAR) interferometry[J]. Engineering Geology, 2006,88(3-4):173-199.
doi: 10.1016/j.enggeo.2006.09.013 url:
[13] Kummerow C, Barnes W, Kozu T, et al. The tropical rainfall measuring mission(TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology, 1998,15(2):809-817.
doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2 url:<0809:TTRMMT>2.0.CO;2
[14] 唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015,30(4):607-615.
[14] Tang G Q, Wan W, Zeng Z Y, et al. An overview of the globe precipitation measurement(GPM) mission and it’s latest development[J]. Remote Sensing Technology and Application, 2015,30(4):607-615.
[15] 陈明, 傅抱璞, 于强. 山区地形对暴雨的影响[J]. 地理学报, 1995,50(3):256-263.
doi: 10.11821/xb199503008
[15] Chen M, Fu B P, Yu Q. Influence of topography on storm rainfall[J]. Acta Geographica Sinca, 1995,50(3):256-263.
[16] 王沛东, 李国平. 秦巴山区地形对一次西南涡大暴雨过程影响的数值试验[J]. 云南大学学报(自然科学版), 2016,38(3):418-429.
[16] Wang P D, Li G P. Numerical experiments of the impact of Qin-Ba mountainous terrain on a rainstorm caused by southwest vortex[J]. Journal of Yunnan University, 2016,38(3):418-429.
[1] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[2] ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 161-170.
[3] LI Chenhui, HAO Lina, XU Qiang, WANG Yi, YAN Lihua. Object-oriented hierarchical identification of earthquake-induced landslides based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 74-80.
[4] HE Peng, YAN Yuyan, WEN Yan, MA Zhigang, JIAO Qisong, GUO Zhaocheng, MO You. Application of the airborne LiDAR technology in the identification of flat landslides and their crack grooves[J]. Remote Sensing for Natural Resources, 2022, 34(4): 307-316.
[5] LIU Yalin. Remote sensing interpretation and analysis of the survey of the Tianshui-Longnan Railway based on realistic scene images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 227-234.
[6] DONG Jihong, MA Zhigang, LIANG Jingtao, LIU Bin, ZHAO Cong, ZENG Shuai, YAN Shengwu, MA Xiaobo. A comparative study of the identification of hidden landslide hazards based on time series InSAR techniques[J]. Remote Sensing for Natural Resources, 2022, 34(3): 73-81.
[7] YANG Zhaoying, HAN Lingyi, ZHENG Xiangxiang, LI Wenji, FENG Lei, WANG Yi, YANG Yongpeng. Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2): 224-230.
[8] CHEN Fuqiang, LIU Yalin, GAO Xu, SONG Minghui, ZHANG Zhanzhong. Application of remote sensing technology to the engineering geological survey for the construction of the China-Nepal railway[J]. Remote Sensing for Natural Resources, 2021, 33(4): 219-226.
[9] LING Xiao, LIU Jiamei, WANG Tao, ZHU Yueqin, YUAN Lingling, CHEN Yangyang. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources, 2021, 33(2): 172-181.
[10] ZHANG Teng, XIE Shuai, HUANG Bo, FAN Jinghui, CHEN Jianping, TONG Liqiang. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 213-219.
[11] CHEN Jie, CAI Jun, LI Jing, HE Peng. Oblique aerial photography technology and its application to geological survey:A case study of Wuxia section in the Three Gorges reservoir[J]. Remote Sensing for Land & Resources, 2021, 33(1): 167-173.
[12] Weijie JIA, Zhihua WANG. Landslide activity characteristics and stability analysis based on high-resolution remote sensing image: A case study of Dongmiaojia landslide[J]. Remote Sensing for Land & Resources, 2019, 31(4): 174-181.
[13] Zhenlin WANG, Mingsheng LIAO, Lu ZHANG, Heng LUO, Jie DONG. Detecting and characterizing deformations of the left bank slope near the Jinping hydropower station with time series Sentinel-1 data[J]. Remote Sensing for Land & Resources, 2019, 31(2): 204-209.
[14] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[15] ZHANG Ce, JIE Wenhui, FU Lihua, WEI Benzan. Remote sensing image and distribution characteristics of landslide disasters in Xinyuan County, Xinjiang[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 81-84.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech