Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 224-230     DOI: 10.6046/zrzyyg.2021204
|
Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide
YANG Zhaoying1,2(), HAN Lingyi1(), ZHENG Xiangxiang1, LI Wenji1, FENG Lei1, WANG Yi1, YANG Yongpeng1,2
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
Download: PDF(4049 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

China is one of the countries with frequent landslide disasters. In recent years. In recent years, more than 70% of the catastrophic geological hazards have occurred not within the scope of known hidden danger points of geological hazards in China. Therefore, there is an urgent need for investigating large-scale landslide disasters using automatic and efficient technologies and methods for landslide identification. To quickly identify the location of landslides from massive remote sensing images, it is necessary to determine the key areas of landslides to support subsequent interpretation and research. This study investigated loess landslide identification based on GF-1 images and digital elevation model (DEM) data. First, a database of remote sensing images and DEM landslide samples was constructed. Second, the landslide samples were classified using the channel fusion convolutional neural network model. Finally, the classification results were restored to the remote sensing images according to the location information. Experimental results showed that the model yielded landslide identification accuracy of 95.7% and a recall rate of 100.0%. The model used in this study has a small number of network layers, a high convergence speed, and higher efficiency and identification accuracy. As a result, it allows for the quick identification of key landslide areas from remote sensing images in the case of a limited number of samples, thus supporting the investigation of large-scale landslide disasters.

Keywords convolutional neural network      landslide identification      remote sensing classification      DEM      loess landslide     
ZTFLH:  TP751  
  TP399  
Corresponding Authors: HAN Lingyi     E-mail: zhaoyingzhaoting@163.com;hanlingyi@mail.cgs.gov.cn
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhaoying YANG
Lingyi HAN
Xiangxiang ZHENG
Wenji LI
Lei FENG
Yi WANG
Yongpeng YANG
Cite this article:   
Zhaoying YANG,Lingyi HAN,Xiangxiang ZHENG, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2): 224-230.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021204     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/224
Fig.1  Typical landslide examples
Fig.2  Typical landslide examples
Fig.3  Model structure diagram
实验划分 样本组成 正样本
数量
负样本
数量
样本
总数
实验一训练 静宁县+张家川县 608 626 1 234
实验二训练 静宁县+张家川县+庄浪县训练部分 798 818 1 616
测试 庄浪县测试部分 155 383 538
Tab.1  Training and test sample statistics table
Fig.4  Experiment 1 training accuracy and loss
Fig.5  Experiment 2 training accuracy and loss
实验 TP FP FN TN 正确
率/%
精度/
%
召回
率/%
F1/
%
实验一 155 17 0 366 96.8 90.1 100.0 94.8
实验二 155 7 0 376 98.7 95.7 100.0 97.8
Tab.2  Test results of experiment 1 and experiment 2
Fig.6  Results of landslide recognition
[1] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.
[1] Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.
[2] 李松, 李亦秋, 安裕伦. 基于变化检测的滑坡灾害自动识别[J]. 遥感信息, 2010(1):27-31.
[2] Li S, Li Y Q, An Y L. Automatic recognition of landslides based on change detection[J]. Remote Sensing Information, 2010(1):27-31.
[3] 张帅娟. 变化检测和面向对象结合的高分辨率遥感影像滑坡体提取方法研究[D]. 成都: 西南交通大学, 2017.
[3] Zhang S J. Research on landslide body extraction method from high-resolution remote sensing image based on change detection and object-oriented[D]. Chengdu: Southwest Jiaotong University, 2017.
[4] 周志华, 林维芳, 许高程, 等. 基于面向对象的滑坡快速识别技术研究[J]. 安徽农业科学, 2012, 40(5):3017-3018,3071.
[4] Zhou Z H, Lin W F, Xu G C, et al. Research of fast landslide recognition based on object-oriented technology[J]. Journal of Abhui Agricultural Sciences, 2012, 40(5):3017-3018,3071.
[5] 丁辉, 张茂省, 朱卫红, 等. 黄土滑坡高分辨率遥感影像识别——以陕西省延安市地区为例[J]. 西北地质, 2019, 52(3):231-239.
[5] Ding H, Zhang M S, Zhu W H, et al. High resolution remote sensing for the identification if loess landslides:Example from Yan’an City[J]. Northwestern Geology, 2019, 52(3):231-239.
[6] Ye C M, Li Y, Cui P, et al. Landslide detection of hyperspectral remote sensing data based on deep learning with constrains[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12):5047-5060.
doi: 10.1109/JSTARS.2019.2951725 url: https://ieeexplore.ieee.org/document/8911205/
[7] Ghorbanzadeh O, Blaschke T, Gholamnia K, et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sensing, 2019, 11(2):1-21.
doi: 10.3390/rs11010001 url: http://www.mdpi.com/2072-4292/11/1/1
[8] Wang H J, Zhang L M, Yin K S, et al. Landslide identification using machine learning[J]. Geoscience Frontiers, 2020, 12(1):351-364.
doi: 10.1016/j.gsf.2020.02.012 url: https://linkinghub.elsevier.com/retrieve/pii/S1674987120300542
[9] 巨袁臻, 许强, 金时超, 等. 使用深度学习方法实现黄土滑坡自动识别[J]. 武汉大学学报(信息科学版), 2020, 45(11):1747-1755.
[9] Ju Y Z, Xu Q, Jin S C, et al. Automatic object detection of loess landslide based on deep learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1747-1755.
[10] Ji S P, Yu D W, Shen C Y, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020:1-16.
[11] Yu B, Chen F, Xu C. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015[J]. Computers & Geosciences, 2020, 135:104388.
doi: 10.1016/j.cageo.2019.104388 url: https://linkinghub.elsevier.com/retrieve/pii/S0098300419303097
[12] Ullo S L, Mohan A, Sebastianelli A, et al. A new Mask R-CNN-based method for improved landslide detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:3799-810.
doi: 10.1109/JSTARS.2021.3064981 url: https://ieeexplore.ieee.org/document/9373966/
[13] Cheng L, Li J, Duan P, et al. A small attentional YOLO model for landslide detection from satellite remote sensing images[J]. Landslides, 2021, 18(8):2751-65.
doi: 10.1007/s10346-021-01694-6 url: https://doi.org/10.1007/s10346-021-01694-6
[14] Catani F. Landslide detection by deep learning of non-nadiral and crowdsourced optical images[J]. Landslides, 2021, 18(3):1025-44.
doi: 10.1007/s10346-020-01513-4 url: https://doi.org/10.1007/s10346-020-01513-4
[15] Hacıefendioğlu K, Demir G, Başağa H B. Landslide detection using visualization techniques for deep convolutional neural network models[J]. Natural Hazards, 2021, 109(1):329-50.
doi: 10.1007/s11069-021-04838-y url: https://doi.org/10.1007/s11069-021-04838-y
[1] ZHU Boqin, YAN Zhaojin, XIE Jing, LIU Hong, SONG Xiaoqing, XIANG Xiqiong. Key technology for selecting depressions as sites of FAST-type radio telescopes[J]. Remote Sensing for Natural Resources, 2023, 35(2): 80-88.
[2] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[3] SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification[J]. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
[4] HE Peng, YAN Yuyan, WEN Yan, MA Zhigang, JIAO Qisong, GUO Zhaocheng, MO You. Application of the airborne LiDAR technology in the identification of flat landslides and their crack grooves[J]. Remote Sensing for Natural Resources, 2022, 34(4): 307-316.
[5] LI Yimin, WU Bowen, LIU Shiyi, LI Yingying, YUAN Jing. Risks and the prevention and control deployment of COVID-19 infection along the border of Ruili City based on the AHP-entropy weight method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 218-226.
[6] KONG Ailing, ZHANG Chengming, LI Feng, HAN Yingjuan, SUN Huanying, DU Manfei. Knowledge-based remote sensing image fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2): 47-55.
[7] MA Yutang, PAN Hao, ZHOU Fangrong, HUANG Ran, ZHAO Jianeng, LUO Jiqiang, LIU Jing, SUN Haoxuan, JIA Weijie, ZHANG Tao. Method to calibrate the coordinates of transmission towers based on satellite images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 63-71.
[8] LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(2): 152-161.
[9] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[10] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[11] LIU Zhao, ZHAO Tong, LIAO Feifan, LI Shuai, LI Haiyang. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
[12] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[13] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[14] WEI Hongyu, ZHAO Yindi, DONG Jihong. Cooling tower detection based on the improved RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(4): 68-73.
[15] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech