Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (4) : 143-152     DOI: 10.6046/zrzyyg.2020378
|
Prediction of lead content in soil based on model population analysis coupled with ELM algorithm
XIAO Yehui1(), SONG Nidi2, MENG Panpan2, WANG Peijun2, FAN Shenglong2()
1. College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350007, China
2. College of Public Management, Fujian Agriculture and Forestry University, Fuzhou 350007, China
Download: PDF(4806 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This paper aims to explore the optimal inversion model of regional heavy metal content in soil. With Longhai City taken as the study area, this study preprocessed the original spectral data of soil using the methods of Savizky Golay (SG), wavelet transform (WT), gaussian filter (GF), and multiple scatter correction (MSC) individually, then eliminated the interference and wavelength bearing no information using the wavelength selection algorithms developed based on model population analysis (MPA), including the competitive adaptive reweighted sampling (CARS), variable iterative space shrinkage approach (VISSA), iteratively variable subset optimization (IVSO), and interval combination optimization (ICO), and finally predicted the lead content in soil using the linear partial least squares regression (PLSR) model, nonlinear support vector machine (SVM) model, and extreme learning machine (ELM) based on neural network. The results are as follows. ① Among the inversion models of lead content in soil established using various preprocessing methods, the model built based on reconstructed spectral data of level 7th by wavelet transform had the most optimal prediction accuracy, with R2=0.736, RMSE=5.426, RPD=1.976, and RPIQ=2.560. ② The CARS, VISSA, IVSO, and ICO algorithms developed based on MPA significantly improved the performance of model interpretation and generalization and improved modeling efficiency. ③ In terms of overall prediction results, the three regression models were in the order of ELM>PLSR>SVM. Among them, the ICO-ELM had the highest prediction accuracy, with R2=0.863, RMSE=3.953, RPD=2.712,and RPIQ=3.514. Therefore, the optimal model established in this study can provide a new theoretical reference for the rapid monitoring of regional land quality and ecological indicators.

Keywords model population analysis      wavelet transform      interval combination optimization      extreme learning machine     
ZTFLH:  TP79  
Corresponding Authors: FAN Shenglong     E-mail: 260939662@qq.com;fsl@fafu.edu.cn
Issue Date: 23 December 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yehui XIAO
Nidi SONG
Panpan MENG
Peijun WANG
Shenglong FAN
Cite this article:   
Yehui XIAO,Nidi SONG,Panpan MENG, et al. Prediction of lead content in soil based on model population analysis coupled with ELM algorithm[J]. Remote Sensing for Natural Resources, 2021, 33(4): 143-152.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020378     OR     https://www.gtzyyg.com/EN/Y2021/V33/I4/143
Fig.1  Location of the study area and distribution of soil sampling sites
重金属
类型
样本集 最小值/
(mg·kg-1)
最大值/
(mg·kg-1)
均值/
(mg·kg-1)
标准差/
(mg·kg-1)
变异系
数/%
Pb 全样本 15.88 95.01 50.98 15.83 0.31
建模集 18.87 84.39 50.80 15.46 0.30
验证集 31.99 65.48 49.50 10.72 0.22
Tab.1  Statistical characteristics of Pb of soil samples
预处理
方法
建模集 验证集
R2 RMSE R2 RMSE RPD RPIQ
None 0.659 8.580 0.703 5.807 1.846 2.392
WT1 0.659 8.583 0.714 5.655 1.896 2.456
WT2 0.658 8.589 0.714 5.654 1.896 2.457
WT3 0.658 8.598 0.714 5.651 1.897 2.458
WT4 0.657 8.611 0.714 5.655 1.896 2.456
WT5 0.656 8.623 0.717 5.625 1.906 2.469
WT6 0.670 8.439 0.703 5.759 1.862 2.412
WT7 0.665 8.502 0.736 5.426 1.976 2.560
WT8 0.664 8.524 0.681 6.018 1.781 2.308
SG 0.667 8.458 0.723 5.604 1.913 2.479
GF 0.660 8.564 0.718 5.615 1.909 2.474
MSC 0.659 8.582 0.702 5.818 1.843 2.387
Tab.2  Different pre-processing methods based on PLSR models
Fig.2  Spectra of soil samples
Fig.3  Variables selected by CARS
Fig.4  Iterative process of VISSA and IVSO
Fig.5  Iterative process of ICO
Fig.6  Selected wavelengths of different wavelength selection methods
模型 波长选择方法 变量数量 建模集 验证集
R2 RMSE R2 RMSE RPD RPIQ
全波段 2 001 0.702 8.450 0.736 5.426 1.976 2.560
CARS 119 0.726 6.958 0.759 5.235 2.048 2.653
PLSR VISSA 78 0.720 7.033 0.780 5.003 2.143 2.777
IVSO 98 0.718 7.050 0.802 4.748 2.258 2.926
ICO 276 0.720 7.023 0.813 4.610 2.325 3.013
SVM CARS 119 0.643 7.939 0.735 5.485 1.954 2.532
VISSA 78 0.645 7.915 0.745 5.385 1.991 2.579
IVSO 98 0.630 8.075 0.757 5.252 2.041 2.645
ICO 276 0.631 8.069 0.770 5.116 2.095 2.715
ELM CARS 119 0.814 6.338 0.806 4.703 2.279 2.953
VISSA 78 0.861 4.948 0.837 4.304 2.491 3.227
IVSO 98 0.899 4.229 0.858 4.013 2.671 3.461
ICO 276 0.877 4.653 0.863 3.953 2.712 3.514
Tab.3  Prediction results of three regression models based on different wavelength selection methods
Fig.7  Relationship between measured and predicted values of validation set based on ICO-ELM model
[1] 宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013,20(2):293-298.
[1] Song W, Chen B M, Liu L. Soil heavy metal pollution of cultivated land in China[J]. Research of Soil and Water Conservation, 2013,20(2):293-298.
[2] 贺军亮, 韩超山, 韦锐, 等. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
doi: 10.6046/gtzyyg.2019.04.13
[2] He J L, Han C S, Wei R, et al. Research on indirect hyperspectral estimating model of heavy metal Cd based on partial least squares regression[J]. Remote Sensing for Land and Resources, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
doi: 10.6046/gtzyyg.2019.04.13
[3] 高凯旋, 焦海明, 王新闯. 融合影像纹理、光谱与地形特征的森林冠顶高反演模型[J]. 国土资源遥感, 2020,32(3):63-70.doi: 10.6046/gtzyyg.2020.03.09.
doi: 10.6046/gtzyyg.2020.03.09
[3] Gao K X, Jiao H M, Wang X C. Inversion model of forest canopy height based on image texture,spectral and topographic features[J]. Remote Sensing for Land and Resources, 2020,32(3):63-70.doi: 10.6046/gtzyyg.2020.03.09.
doi: 10.6046/gtzyyg.2020.03.09
[4] 段宏伟, 朱荣光, 许卫东, 等. 基于GA和CARS的真空包装冷却羊肉细菌菌落总数高光谱检测[J]. 光谱学与光谱分析, 2017,37(3):847-852.
[4] Duan H W, Zhu R G, Xu W D, et al. Hyperspectral imaging detection of total viable count from vacuum packing cooling mutton based on GA and CARS algorithms[J]. Spectroscopy and Spectral Analysis, 2017,37(3):847-852.
[5] Le B T, 肖冬, 毛亚纯, 等. 可见、近红外光谱和深度学习CNN-ELM算法的煤炭分类[J]. 光谱学与光谱分析, 2018,38(7):2107-2112.
[5] Le B T, Xiao D, Mao Y C, et al. Coal classification based on visible,near-infrared spectroscopy and CNN-ELM algorithm[J]. Spectroscopy and Spectral Analysis, 2018,38(7):2107-2112.
[6] 汪六三, 鲁翠萍, 王儒敬, 等. 土壤碱解氮含量可见/近红外光谱预测模型优化[J]. 发光学报, 2018,39(7):1016-1023.
[6] Wang L S, Lu C P, Wang R J, et al. Optimization for Vis/NIRS prediction model of soil available nitrogen content[J]. Chinese Journal of Luminescence, 2018,39(7):1016-1023.
doi: 10.3788/fgxb url: http://www.opticsjournal.net/Journals/fgxb.htm
[7] 吴倩, 姜琦刚, 史鹏飞, 等. 基于高光谱的土壤碳酸钙含量估算模型研究[J]. 国土资源遥感, 2021,33(1):138-144.doi: 10.6046/gtzyyg.2020095.
doi: 10.6046/gtzyyg.2020095
[7] Wu Q, Jiang Q G, Shi P F, et al. Estimation of soil calcium carbonate content based on hyperspectral data[J]. Remote Sensing for Land and Resources, 2021,33(1):138-144.doi: 10.6046/gtzyyg.2020095.
doi: 10.6046/gtzyyg.2020095
[8] 李跑, 周骏, 蒋立文, 等. 窗口竞争性自适应重加权采样策略的近红外特征变量选择方法[J]. 光谱学与光谱分析, 2019,39(5):1428-1432.
[8] Li P, Zhou J, Jiang L W, et al. A variable selection approach of near infrared spectra based on window competitive adaptive reweighted sampling strategy[J]. Spectroscopy and Spectral Analysis, 2019,39(5):1428-1432.
[9] Li H, Liang Y, Xu Q, et al. Model population analysis for variable selection[J]. Journal of Chemometrics, 2010,24(7-8):418-423.
doi: 10.1002/cem.1300 url: https://onlinelibrary.wiley.com/doi/10.1002/cem.1300
[10] 于雷, 章涛, 朱亚星, 等. 基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值[J]. 农业工程学报, 2018,34(16):148-154.
[10] Yu L, Zhang T, Zhu Y X, et al. Determination of soybean leaf SPAD value using characteristic wavelength variables preferably selected by IRIV algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(16):148-154.
[11] 刘贵珊, 张翀, 樊奈昀, 等. IVISSA算法冷鲜滩羊肉嫩度的高光谱模型优化[J]. 光谱学与光谱分析, 2020,40(8):2558-2563.
[11] Liu G S, Zhang C, Fan N Y, et al. Hyperspectral model optimization for tenderness of chilled tan-sheep mutton based on IVISSA[J]. Spectroscopy and Spectral Analysis, 2020,40(8):2558-2563.
[12] 云永欢, 邓百川, 梁逸曾. 化学建模与模型集群分析[J]. 分析化学, 2015,43(11):1638-1647.
[12] Yun Y H, Deng B C, Liang Y Z. Progress of chemical modeling and model population analysis[J]. Chinese Journal of Analytical Chemistry, 2015,43(11):1638-1647.
[13] Deng B C, Yun Y H, Liang Y Z, et al. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling[J]. Analyst, 2014,139(19):4836-4845.
doi: 10.1039/C4AN00730A url: http://xlink.rsc.org/?DOI=C4AN00730A
[14] Wang W, Yun Y, Deng B, et al. Iteratively variable subset optimization for multivariate calibration[J]. RSC Advances, 2015,5(116):95771-95780.
doi: 10.1039/C5RA08455E url: http://xlink.rsc.org/?DOI=C5RA08455E
[15] Song X Z, Yue H, Hong Y, et al. A novel algorithm for spectral interval combination optimization[J]. Analytica Chimica Acta, 2016,948:19-29.
doi: 10.1016/j.aca.2016.10.041 url: https://linkinghub.elsevier.com/retrieve/pii/S0003267016312715
[16] 孙凯, 孙彬彬, 周国华, 等. 福建龙海土壤重金属含量特征及影响因素研究[J]. 现代地质, 2018,32(6):1302-1310.
[16] Sun K, Sun B B, Zhou G H, et al. Study on concentration characteristics and influencing factors of heavy metals in soils in Longhai,Fujian Province[J]. Geoscience, 2018,32(6):1302-1310.
[17] 刘智超, 蔡文生, 邵学广. 蒙特卡洛交叉验证用于近红外光谱奇异样本的识别[J]. 中国科学(B辑:化学), 2008,38(4):316-323.
[17] Liu Z C, Cai W S, Shao X G. Identification of NIR outlier samples by MCCV[J]. Science in China Series B:Chemistry, 2008,38(4):316-323.
[18] Huang G, Huang G, Song S, et al. Trends in extreme learning machines:A review[J]. Neural Networks, 2015,61:32-48.
pmid: 25462632
[19] Tan K, Wang H, Zhang Q, et al. An improved estimation model for soil heavy metal(loid) concentration retrieval in mining areas using reflectance spectroscopy[J]. Journal of Soils and Sediments, 2018,18(5):2008-2022.
doi: 10.1007/s11368-018-1930-6 url: https://doi.org/10.1007/s11368-018-1930-6
[20] 宋相中, 唐果, 张录达, 等. 近红外光谱分析中的变量选择算法研究进展[J]. 光谱学与光谱分析, 2017,37(4):1048-1052.
[20] Song X Z, Tang G, Zhang L D, et al. Research advance of variable selection algorithms in near infrared spectroscopy analysis[J]. Spectroscopy and Spectral Analysis, 2017,37(4):1048-1052.
[1] ZHOU Chaofan, GONG Huili, CHEN Beibei, LEI Kunchao, SHI Liyuan, ZHAO Yu. Prediction of land subsidence along Tianjin-Baoding high-speed railway using WT-RF method[J]. Remote Sensing for Natural Resources, 2021, 33(4): 34-42.
[2] DU Yi, WANG Dayang, WANG Dagang. Spatial downscaling of GPM precipitation products: A case study of Guizhou Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 111-120.
[3] XIAO Yan, XIN Hongbo, WANG Bin, CUI Li, JIANG Qigang. Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(2): 33-39.
[4] WANG Xiaobing. Denoising algorithm based on the fusion of lifting wavelet thresholding and multidirectional edge detection of remote sensing image of mining area[J]. Remote Sensing for Land & Resources, 2020, 32(4): 46-52.
[5] Lijuan WANG, Xiao JIN, Hujun JIA, Yao TANG, Guochao MA. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
[6] HU Hualong, XUE Wu, QIN Zhiyuan. Extraction of residential area from high resolution images based on wavelet texture and primitive merging[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 21-28.
[7] ZHANG Qian. Remote sensing image de-noising algorithm based on double discrete wavelet transform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 14-20.
[8] LI Wenjing, WEN Wenpeng, WANG Qinghe. A study of remote sensing image fusion method based on Contourlet transform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 44-50.
[9] MENG Qiangqiang, YANG Guang, TONG Tao, ZHANG Jianfeng. Fusion algorithm of multifocus images based on wavelet transform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 38-42.
[10] WU Shou-jiang, LI Liang, GONG Ben-xu, GONG Mei. Comparison of the Methods for Haze Elimination of GeoEye-1 Remote Sensing Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 50-53.
[11] DONG Zhang-yu, ZHAO Ping, LIU Dian-wei, WANG Zong-ming, TANG Xu-guang, Liu Jing-yi. An Improved Wavelet Transformation Image Fusion Method and Evaluation of Its Fusion Result[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 44-49.
[12] FAN Wen-Ting, FU Ping. A REMOTE SENSING IMAGE FUSION METHOD BASED ON WAVELET TRANSFORM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(3): 24-26.
[13] ZHANG Da-Ming, LI Lu, FU Mao-Sheng, LUO Bin. PAN AND MULTI-SPECTRAL REMOTE SENSING IMAGE FUSION BASED ON WAVELET TRANSFORM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(1): 50-54.
[14] LIU Jia-Jia, GUAN Lei, LI Le-Le. IMAGE FUSION OF LANDSAT 7 ETM+ DATA
BASED ON à TROUS  WAVELET TRANSFORM
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(2): 50-52.
[15] ZHU Jun-Jie, GUO Hua-Dong, FAN Xiang-Tao, ZHU Bo-Qin. THE APPLICATION OF THE WAVELET TEXTURE METHOD TO
THE CLASSIFICATION OF SINGLE-BAND, SINGLE-POLARIZED
AND HIGH-RESOLUTION SAR IMAGES
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(2): 36-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech