Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 151-158     DOI: 10.6046/gtzyyg.2018.03.21
|
Change detection for mine environment based on domestic high resolution satellite images
Lijuan WANG1,2,3, Xiao JIN2,3(), Hujun JIA2,3, Yao TANG2,3, Guochao MA2,3
1. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610045, China
2. Sichuan Academy of Safety Science and Technology, Chengdu 610045, China
3. Key Laboratory of Measurement and Control of Major Hazard Sources in Sichuan Province, Chengdu 610045, China
Download: PDF(7885 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the development of mine monitoring technology towards the quantification and automation, the traditional remote sensing technology based on visual interpretation is not suitable for mine monitoring. In order to improve the automation of mine remote sensing monitoring and make up for deficiencies in traditional monitoring methods, the authors constructed an object-based change detection method with high degree of automation for dynamic monitoring of mine and the surrounding environment based on GF-2 remote sensing images. The method automatically selected training samples based on change vector analysis (CVA) and extracted change information by using extreme learning machine (ELM). The experimental results show that the detection accuracy of this method is 98.73%, and it can be used in the dynamic monitoring and analysis of mine environment with highly automation. Taking the typical mine and tailings pond in Miyi County of Sichuan Province as examples, the authors carried out the dynamic monitoring of mines and the surrounding areas based on GF-2 remote sensing images. The changes of mine and its surroundings were accurately detected, which verifies the feasibility of the method and provides examples for large-scale remote sensing monitoring in mine.

Keywords mine monitoring      change detection      GF-2 remote sensing images      extreme learning machine     
:  TP751.1  
Corresponding Authors: Xiao JIN     E-mail: jinxiao09@163.com
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lijuan WANG
Xiao JIN
Hujun JIA
Yao TANG
Guochao MA
Cite this article:   
Lijuan WANG,Xiao JIN,Hujun JIA, et al. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.21     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/151
Fig.1  Flow chart of object-based automatic change detection method
Fig.2  Images of experiment region in two periods
Fig.3  Reference change map of experiment region
Fig.4  Feature images of experiment region
Fig.5  Number of error detected pixels which were obtained by different training samples with different parameters
方法 CVA CVA-
OB
diff-
pixel
diff-
OB
SVM-
OB
CVA-
ELM
总体精
度/%
95.26 94.43 94.94 96.31 98.50 98.73
Kappa系数 0.604 1 0.501 9 0.585 9 0.715 7 0.892 8 0.918 0
虚检率/% 2.28 1.24 9.15 7.78 3.35 5.89
漏检率/% 4.84 5.71 4.87 3.53 1.43 0.85
Tab.1  Accuracy of different change detection methods
Fig.6  Change map obtained by different methods
Fig.7  Images of Wanniangou tailing pond and the surrounding areas in two periods
Fig.8  Change map of Wanniangou tailing pond and the surrounding areas from 2015 to 2016
Fig.9  Images of Weilongzhou dump and the surrounding areas in two periods
Fig.10  Change map of Weilongzhou dump and the surrounding areas from 2015 to 2016
Fig.11  Images of Binghualan stope and the surrounding areas in two periods
Fig.12  Change map of Binglanhua stope and the surrounding areas from 2015 to 2016
[1] 张焜, 马世斌, 刘丽萍 . 基于SPOT5数据的盐湖矿产开发及矿山环境遥感监测[J]. 国土资源遥感, 2012,24(3):146-153.doi: 10.6046/gtzyyg.2012.03.26.
doi: 10.6046/gtzyyg.2012.03.26 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201203026
[1] Zhang K, Ma S B, Liu L P . Remote sensing monitoring of the mineral resources exploration and mining environment of the salt lake based on SPOT5 data[J]. Remote Sensing for Land and Resources, 2012,24(3):146-153.doi: 10.6046/gtzyyg.2012.03.26.
[2] Rogan J, Franklin J, Roberts D A . A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery[J]. Remote Sensing of Environment, 2002,80(1):143-156.
doi: 10.1016/S0034-4257(01)00296-6 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425701002966
[3] 路云阁, 刘采, 王姣 . 基于国产卫星数据的矿山遥感监测一体化解决方案——以西藏自治区为例[J]. 国土资源遥感, 2014,26(4):85-90.doi: 10.6046/gtzyyg.2014.04.14.
doi: 10.6046/gtzyyg.2014.04.14 url: http://www.wutanyuhuatan.com/CN/abstract/abstract1787.shtml
[3] Lu Y G, Liu C, Wang J . Integrated solutions for mine remote sensing monitoring based on domestic satellite images:A case study of Tibet[J]. Remote Sensing for Land and Resources, 2014,26(4):85-90.doi: 10.6046/gtzyyg.2014.04.14.
[4] 安志宏, 聂洪峰, 王昊 , 等. ZY-102 C星数据在矿山遥感监测中的应用研究与分析[J]. 国土资源遥感, 2015,27(2):174-182.doi: 10.6046/gtzyyg.2015.02.27.
doi: 10.6046/gtzyyg.2015.02.27
[4] An Z H, Nie H F, Wang H , et al. Study and analysis of application of ZY-1 02C satellite data to remote sensing monitoring technology for exploration of mineral resources[J]. Remote Sensing for Land and Resources, 2015,27(2):174-182.doi: 10.6046/gtzyyg.2015.02.27.
[5] 魏江龙, 周颖智, 邵怀勇 , 等. 基于高分一号数据的矿山遥感监测——以会理多金属矿区为例[J]. 有色金属(矿山部分), 2016,68(4):86-91.
doi: 10.3969/j.issn.1671-4172.2016.04.020 url: http://d.wanfangdata.com.cn/Periodical_ysjs-ks201604020.aspx
[5] Wei J L, Zhou Y Z, Shao H Y , et al. Remote sensing monitoring of mine based on data of GF-1 - in the case of Huili polymetallic mining area[J]. Nonferrous Metals (Mine Section), 2016,68(4):86-91.
[6] Roy M, Ghosh S, Ghosh A . A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system[J]. Information Sciences, 2014,269:35-47.
doi: 10.1016/j.ins.2014.01.037 url: http://linkinghub.elsevier.com/retrieve/pii/S0020025514000735
[7] 常方正, 赵银娣, 刘善磊 . 遥感影像CVA变化检测的CUDA并行算法设计[J]. 遥感学报, 2016,20(1):114-128.
doi: 10.11834/jrs.20164311 url: http://d.wanfangdata.com.cn/Periodical/ygxb201601012
[7] Chang F Z, Zhao Y D, Liu S L . CUDA parallel algorithm for CVA change detection of remote sensing imagery[J]. Journal of Remote Sensing, 2016,20(1):114-128.
[8] 黄维, 黄进良, 王立辉 , 等. 基于PCA的变化向量分析法遥感影像变化检测[J]. 国土资源遥感, 2016,28(1):22-27.doi: 10.6046/gtzyyg.2016.01.04.
doi: 10.6046/gtzyyg.2016.01.04
[8] Huang W, Huang J L, Wang L H , et al. Remote sensing image change detection based on change vector analysis of PCA component[J]. Remote Sensing for Land and Resources, 2016,28(1):22-27.doi: 10.6046/gtzyyg.2016.01.04.
[9] Wang R, Kwong S, Wang X Z , et al. Segment based decision tree induction with continuous valued attributes[J]. IEEE Transactions on Cybernetics, 2015,45(7):1262-1275.
doi: 10.1109/TCYB.2014.2348012 pmid: 25291806 url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6912950
[10] Tan K, Li E Z, Du Q , et al. An efficient semi-supervised classification approach for hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,97:36-45.
doi: 10.1016/j.isprsjprs.2014.08.003 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271614002020
[11] Tan K, Jin X, Plaza A , et al. Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral-spatial features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016,9(8):3439-3451.
doi: 10.1109/JSTARS.2016.2541678 url: http://ieeexplore.ieee.org/document/7450611/
[12] Li W, Chen C, Su H J , et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(7):3681-3693.
doi: 10.1109/TGRS.2014.2381602 url: http://ieeexplore.ieee.org/document/7010879/
[13] Samat A, Du P J, Liu S C , et al. E 2LMs:Ensemble extreme learning machines for hyperspectral image classification [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(4):1060-1069.
doi: 10.1109/JSTARS.4609443 url: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[14] Hussain M, Chen D M, Cheng A , et al. Change detection from remotely sensed images: From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,80:91-106.
doi: 10.1016/j.isprsjprs.2013.03.006 url: http://linkinghub.elsevier.com/retrieve/pii/S0924271613000804
[15] 张森, 陈健飞, 龚建周 . 面向对象分类的决策树方法探讨——以Landsat-8OLI为例[J]. 测绘科学, 2016,41(6):117-121,125.
[15] Zhang S, Chen J F, Gong J Z . Object-oriented classification based on C5.0 algorithm[J]. Science of Surveying and Mapping, 2016,41(6):117-121,125.
[16] Huo C L, Zhou Z X, Lu H Q , et al. Fast object-level change detection for VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2010,7(1):118-122.
doi: 10.1109/LGRS.2009.2028438 url: http://ieeexplore.ieee.org/document/5247033/
[1] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[2] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[3] DU Yi, WANG Dayang, WANG Dagang. Spatial downscaling of GPM precipitation products: A case study of Guizhou Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 111-120.
[4] XIAO Yehui, SONG Nidi, MENG Panpan, WANG Peijun, FAN Shenglong. Prediction of lead content in soil based on model population analysis coupled with ELM algorithm[J]. Remote Sensing for Natural Resources, 2021, 33(4): 143-152.
[5] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[6] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[7] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[8] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[9] LI Xiao, LIU Ying, YAO Weiling, YANG Jinzhong, LI Yongzhi, WANG Jie. Automatic plotting of illegal mines based on ArcPy[J]. Remote Sensing for Land & Resources, 2020, 32(3): 247-251.
[10] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[11] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[12] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[13] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
[14] Zhan ZHAO, Wang XIA, Li YAN. Land use change detection based on multi-source data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 148-155.
[15] Mingguang DIAO, Fang LIU, Zhuantiao TAN, Tao XUE, Yanzuo WANG. Research and implement on automatic production method of mine remote sensing monitoring interpretation record table[J]. Remote Sensing for Land & Resources, 2018, 30(4): 212-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech