|
|
|
|
|
|
Change detection for mine environment based on domestic high resolution satellite images |
Lijuan WANG1,2,3, Xiao JIN2,3(), Hujun JIA2,3, Yao TANG2,3, Guochao MA2,3 |
1. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610045, China 2. Sichuan Academy of Safety Science and Technology, Chengdu 610045, China 3. Key Laboratory of Measurement and Control of Major Hazard Sources in Sichuan Province, Chengdu 610045, China |
|
|
Abstract With the development of mine monitoring technology towards the quantification and automation, the traditional remote sensing technology based on visual interpretation is not suitable for mine monitoring. In order to improve the automation of mine remote sensing monitoring and make up for deficiencies in traditional monitoring methods, the authors constructed an object-based change detection method with high degree of automation for dynamic monitoring of mine and the surrounding environment based on GF-2 remote sensing images. The method automatically selected training samples based on change vector analysis (CVA) and extracted change information by using extreme learning machine (ELM). The experimental results show that the detection accuracy of this method is 98.73%, and it can be used in the dynamic monitoring and analysis of mine environment with highly automation. Taking the typical mine and tailings pond in Miyi County of Sichuan Province as examples, the authors carried out the dynamic monitoring of mines and the surrounding areas based on GF-2 remote sensing images. The changes of mine and its surroundings were accurately detected, which verifies the feasibility of the method and provides examples for large-scale remote sensing monitoring in mine.
|
Keywords
mine monitoring
change detection
GF-2 remote sensing images
extreme learning machine
|
|
Corresponding Authors:
Xiao JIN
E-mail: jinxiao09@163.com
|
Issue Date: 10 September 2018
|
|
|
[1] |
张焜, 马世斌, 刘丽萍 . 基于SPOT5数据的盐湖矿产开发及矿山环境遥感监测[J]. 国土资源遥感, 2012,24(3):146-153.doi: 10.6046/gtzyyg.2012.03.26.
doi: 10.6046/gtzyyg.2012.03.26
url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201203026
|
[1] |
Zhang K, Ma S B, Liu L P . Remote sensing monitoring of the mineral resources exploration and mining environment of the salt lake based on SPOT5 data[J]. Remote Sensing for Land and Resources, 2012,24(3):146-153.doi: 10.6046/gtzyyg.2012.03.26.
|
[2] |
Rogan J, Franklin J, Roberts D A . A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery[J]. Remote Sensing of Environment, 2002,80(1):143-156.
doi: 10.1016/S0034-4257(01)00296-6
url: http://linkinghub.elsevier.com/retrieve/pii/S0034425701002966
|
[3] |
路云阁, 刘采, 王姣 . 基于国产卫星数据的矿山遥感监测一体化解决方案——以西藏自治区为例[J]. 国土资源遥感, 2014,26(4):85-90.doi: 10.6046/gtzyyg.2014.04.14.
doi: 10.6046/gtzyyg.2014.04.14
url: http://www.wutanyuhuatan.com/CN/abstract/abstract1787.shtml
|
[3] |
Lu Y G, Liu C, Wang J . Integrated solutions for mine remote sensing monitoring based on domestic satellite images:A case study of Tibet[J]. Remote Sensing for Land and Resources, 2014,26(4):85-90.doi: 10.6046/gtzyyg.2014.04.14.
|
[4] |
安志宏, 聂洪峰, 王昊 , 等. ZY-102 C星数据在矿山遥感监测中的应用研究与分析[J]. 国土资源遥感, 2015,27(2):174-182.doi: 10.6046/gtzyyg.2015.02.27.
doi: 10.6046/gtzyyg.2015.02.27
|
[4] |
An Z H, Nie H F, Wang H , et al. Study and analysis of application of ZY-1 02C satellite data to remote sensing monitoring technology for exploration of mineral resources[J]. Remote Sensing for Land and Resources, 2015,27(2):174-182.doi: 10.6046/gtzyyg.2015.02.27.
|
[5] |
魏江龙, 周颖智, 邵怀勇 , 等. 基于高分一号数据的矿山遥感监测——以会理多金属矿区为例[J]. 有色金属(矿山部分), 2016,68(4):86-91.
doi: 10.3969/j.issn.1671-4172.2016.04.020
url: http://d.wanfangdata.com.cn/Periodical_ysjs-ks201604020.aspx
|
[5] |
Wei J L, Zhou Y Z, Shao H Y , et al. Remote sensing monitoring of mine based on data of GF-1 - in the case of Huili polymetallic mining area[J]. Nonferrous Metals (Mine Section), 2016,68(4):86-91.
|
[6] |
Roy M, Ghosh S, Ghosh A . A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system[J]. Information Sciences, 2014,269:35-47.
doi: 10.1016/j.ins.2014.01.037
url: http://linkinghub.elsevier.com/retrieve/pii/S0020025514000735
|
[7] |
常方正, 赵银娣, 刘善磊 . 遥感影像CVA变化检测的CUDA并行算法设计[J]. 遥感学报, 2016,20(1):114-128.
doi: 10.11834/jrs.20164311
url: http://d.wanfangdata.com.cn/Periodical/ygxb201601012
|
[7] |
Chang F Z, Zhao Y D, Liu S L . CUDA parallel algorithm for CVA change detection of remote sensing imagery[J]. Journal of Remote Sensing, 2016,20(1):114-128.
|
[8] |
黄维, 黄进良, 王立辉 , 等. 基于PCA的变化向量分析法遥感影像变化检测[J]. 国土资源遥感, 2016,28(1):22-27.doi: 10.6046/gtzyyg.2016.01.04.
doi: 10.6046/gtzyyg.2016.01.04
|
[8] |
Huang W, Huang J L, Wang L H , et al. Remote sensing image change detection based on change vector analysis of PCA component[J]. Remote Sensing for Land and Resources, 2016,28(1):22-27.doi: 10.6046/gtzyyg.2016.01.04.
|
[9] |
Wang R, Kwong S, Wang X Z , et al. Segment based decision tree induction with continuous valued attributes[J]. IEEE Transactions on Cybernetics, 2015,45(7):1262-1275.
doi: 10.1109/TCYB.2014.2348012
pmid: 25291806
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6912950
|
[10] |
Tan K, Li E Z, Du Q , et al. An efficient semi-supervised classification approach for hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,97:36-45.
doi: 10.1016/j.isprsjprs.2014.08.003
url: http://linkinghub.elsevier.com/retrieve/pii/S0924271614002020
|
[11] |
Tan K, Jin X, Plaza A , et al. Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral-spatial features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016,9(8):3439-3451.
doi: 10.1109/JSTARS.2016.2541678
url: http://ieeexplore.ieee.org/document/7450611/
|
[12] |
Li W, Chen C, Su H J , et al. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(7):3681-3693.
doi: 10.1109/TGRS.2014.2381602
url: http://ieeexplore.ieee.org/document/7010879/
|
[13] |
Samat A, Du P J, Liu S C , et al. E 2LMs:Ensemble extreme learning machines for hyperspectral image classification [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(4):1060-1069.
doi: 10.1109/JSTARS.4609443
url: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
|
[14] |
Hussain M, Chen D M, Cheng A , et al. Change detection from remotely sensed images: From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,80:91-106.
doi: 10.1016/j.isprsjprs.2013.03.006
url: http://linkinghub.elsevier.com/retrieve/pii/S0924271613000804
|
[15] |
张森, 陈健飞, 龚建周 . 面向对象分类的决策树方法探讨——以Landsat-8OLI为例[J]. 测绘科学, 2016,41(6):117-121,125.
|
[15] |
Zhang S, Chen J F, Gong J Z . Object-oriented classification based on C5.0 algorithm[J]. Science of Surveying and Mapping, 2016,41(6):117-121,125.
|
[16] |
Huo C L, Zhou Z X, Lu H Q , et al. Fast object-level change detection for VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2010,7(1):118-122.
doi: 10.1109/LGRS.2009.2028438
url: http://ieeexplore.ieee.org/document/5247033/
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|