Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 43-52     DOI: 10.6046/zrzyyg.2022310
|
Remote sensing-based monitoring and analysis of residential carbon emissions
TIAN Zhao(), LIANG Ailin()
School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
Download: PDF(5800 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In recent years, the research on residents’ carbon emissions has mostly focused on the economic level and direct energy consumption, and less involved in the area of residential areas, and most of the research has relied on traditional surface measured data. In order to improve data accuracy and make more targeted policies, this paper selected China as the research object by taking advantage of the features of strong timeliness, wide coverage and small constraints of remote sensing images, and analyzed the correlation between residential area and residential carbon emissions in China in 2019. After determining the significance of the two, combined with the influencing factor of GDP, a multiple linear regression model was established between residents’ carbon emissions and residential area and GDP. The results show that there is a linear correlation between residents’ carbon emissions and the area of residential areas and GDP. With the development of economic level, the expansion of residential area is the main driving force for the increase of residential carbon emissions, and the driving effect of GDP on the increase of residential carbon emissions has decreased. Therefore, it is necessary to reasonably control the expansion of residential areas while considering economic development, so as to make more refined emission reduction policies and achieve the country's future green and low-carbon goals.

Keywords residential carbon emissions      residential area      remote sensing technology      linear regression      GDP     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhao TIAN
Ailin LIANG
Cite this article:   
Zhao TIAN,Ailin LIANG. Remote sensing-based monitoring and analysis of residential carbon emissions[J]. Remote Sensing for Natural Resources, 2023, 35(4): 43-52.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022310     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/43
Fig.1  Carbon emission distribution chart of Chinese residents
Fig.2  Distribution chart of residential area in China
省(自治区、直辖市) 碳排放量/t 居民区面积/km2 省(自治区、直辖市) 碳排放量/t 居民区面积/km2
甘肃 13 223 574.000 2 058.908 重庆 14 508 318.760 1 384.728
北京 21 268 528.530 2 826.019 宁夏 3 940 642.663 1 106.026
吉林 15 637 185.780 6 171.864 四川 42 500 763.240 4 463.696
安徽 31 621 887.420 7 549.304 青海 3 421 548.663 399.819
福建 20 063 517.890 3 201.937 山东 54 052 669.620 19 091.455
广东 73 539 100.640 8 441.027 上海 23 771 177.490 1 955.184
广西 24 451 589.250 3 846.033 山西 21 586 369.170 4 746.097
贵州 17 284 229.880 1 919.981 陕西 21 588 825.170 4 163.300
海南 4 352 481.453 791.205 台湾 8 129 353.272 1 913.283
河北 42 773 490.350 16 757.354 天津 11 183 955.830 2 114.388
河南 52 696 895.880 13 424.795 香港 169 055.536 15.656
黑龙江 22 016 581.500 9 734.911 浙江 35 167 736.360 7 163.604
湖北 29 786 741.440 5 335.333 云南 24 984 211.160 3 588.350
湖南 35 040 778.890 5 328.253 西藏 1 893 136.813 41.076
江苏 48 748 844.030 13 764.077 内蒙古 14 579 287.550 5 196.512
江西 25 398 795.790 4 426.416 新疆 13 741 231.130 3 791.730
辽宁 25 696 782.040 9 110.471 澳门 109 775.838 10.552
Tab.1  Statistical table of residents’ carbon emissions and residential area in various provinces in China
自变量 回归系数 t p R2 F 德宾-沃森
常数 9 703 589.944 3.585 0.001** 0.621 F(1,32)=52.380
P=0.000
2.089
居民区面积 2 805.682 7.237 0.000**
Tab.2  OLS regression analysis results
Fig.3  Trend chart of residential area and residents’ carbon emissions in various provinces in China
Fig.4  Trend chart of residential area and carbon emission in some provinces and cities
拟合模型 公式 可拟合度R2
线性函数 G D P =0.051TNL+343.091 0.797
二次多项式函数 G D P =1.293 ×10-8 T N L 2+0.028TNL+6 710.071 0.816
指数函数 G D P = 7 646.177 e 1.701 × 10 - 6 T N L 0.587
Tab.3  Comparison of different models in different provinces in China
自变量 回归系数 t p R2 Beta
TNL 0.028 2.145 0.040* 0.816 0.498
TNL2 1.293×10-8 7.237 0.000** 0.418
Tab.4  Fitting results of a quadratic polynomial model
Fig.5  GDP and TNL trend chart of Chinese provinces
自变量 回归系数 t p R2 Beta
TNL 1.374 2×10-5 10.462 0.000** 0.852 0.923
常数 856.462 6.953 0.000**
Tab.5  Fitting results of index models for cities in Guangdong Province
Fig.6  GDP and TNL trend chart of cities in Guangdong Province
Fig.7  Comparison chart of Corrected GDP and real GDP
自变量 回归系数 t p R2 F 德宾-沃森
常数 5 439 354.454 2.009 0.043* 0.703 F(2,31)=36.752,
F=0.000
2.032
x 1(居民区面积) 2 255.327 5.710 0.000**
x 2(GDP) 184.146 3.063 0.005**
Tab.6  OLS regression results of the whole model
尺度 模型 R2
中国省(自治区、直辖市)级 Y=2 255.327 x 1+184.146 x 2+5 439 354.454 0.703
广东省市级 Y=5 640.426 x 1+215.392 x 2+104 706.689 1 0.961
黑龙江省市级 Y=1 027.658 x 1+831.069 x 2-82 248.171 0.932
陕西省市级 Y=2 607.585 x 1+338.204 x 2+223 457.023 0.954
山西省市级 Y=2 234.288 x 1+673.122 x 2-47 130.692 0.964
Tab.7  Model results at different scales
Fig.8  Comparison chart between the real value and the fitted value of residential carbon emission in provinces
Fig.9  Comparison chart between the real value and the fitted value of residential carbon emission in cities
[1] 孙洁, 王鹏飞. 基于STIRPAT模型研究南京碳排放的影响因素[J]. 物流科技, 2022, 45(2):117-122.
[1] Sun J, Wang P F. Study on influencing factors of CO2 emission in Nanjing based on STIRPAT model[J]. Logistics Sci-Tech, 2022, 45(2):117-122.
[2] 杜威. 基于LMDI分解模型的中国居民生活间接碳排放特征分析[J]. 中国人口·资源与环境, 2016, 26(s2):5-9.
[2] Du W. Analysis of characteristics of Chinese residents' indirect carbon emissions in daily life based on LMDl decomposition model[J]. China Population Resources and Environment, 2016, 26(s2):5-9.
[3] Huo T F, Ma Y L, Yu T, et al. Decoupling and decomposition analysis of residential building carbon emissions from residential income evidence from the provincial level in China[J]. Environmental Impact Assessment Review, 2021(86):106487.
[4] 佟昕, 陈凯, 李刚. 中国碳排放影响因素分析和趋势预测——基于STIRPAT和GM(1,1)模型的实证研究[J]. 东北大学学报(自然科学版), 2015, 36(2):297-300.
doi: 10.12068/j.issn.1005-3026.2015.02.031
[4] Tong X, Chen K, Li G. Influencing factors analysis and trend forecasting of China’s carbon emissions—empirical study based on STIRPAT and GM(1,1) models[J]. Journal of Northeastern University(Nature Science), 2015, 36(2):297-300.
[5] 刘金培, 宋晓霞, 陈华友, 等. 中国人均碳排放影响因素的长期均衡与因果动态关系研究——基于结构突变ARDL-VECM模型的实证分析[J]. 运筹与管理, 2019, 28(9):57-65.
doi: 10.12005/orms.2019.0199
[5] Liu J P, Song X X, Chen H Y, et al. Study on the Long-term equilibrium and causality of the influencing factors of China’s per capita carbon based on structural break ARDL and VECM model[J]. Operations Research and Management Science, 2019, 28(9):57-65.
[6] Zhang, et al. High-resolution global carbon emission grid 2019,in prep[DB]. http://gidmodel.org.cn/.
url: http://gidmodel.org.cn/
[7] Marconcini M, Metz-Marconcini A, Esch T, et al. Understanding current trends in global urbanisation-the world settlement footprint suite[J]. GI_Forum, 2021(1):33-38.
[8] 于博, 杨旭, 吴相利. 哈长城市群县域碳排放空间溢出效应及影响因素研究——基于NPP-VIIRS夜间灯光数据的实证[J]. 环境科学学报, 2020, 40(2):697-706.
[8] Yu B, Yang X, Wu X L. Study on spatial spillover effects and influencing factors of carbon emissions in county areas of Ha-Chang city group:Evidence from NPP-VIIRS nightlight data[J]. Acta Scientiae Circumstantiae, 2020, 40(2):697-706.
[9] 顾鹏程, 王世新, 周艺, 等. 基于时间序列DMSP/OLS夜间灯光数据的GDP预测模型[J]. 中国科学院大学学报, 2019, 36(2):188-195.
doi: 10.7523/j.issn.2095-6134.2019.02.006
[9] Gu P C, Wang S X, Zhou Y, et al. Estimation of GDP based on long time series of DMSP/OLS nighttime light images[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(2):188-195.
doi: 10.7523/j.issn.2095-6134.2019.02.006
[10] 李峰, 卫爱霞, 米晓楠, 等. 基于NPP-VIIRS夜间灯光数据的河北省GDP空间化方法[J]. 信阳师范学院学报(自然科学版), 2016, 29(1):152-156.
[10] Li F, Wei A X, Mi X N, et al. An approach of GDP spatialization in Hebei Province using NPP-VIIRS nighttime light data[J]. Journal of Xinyang Normal University (Natural Science Edition), 2016, 29(1):152-156.
[11] 杨青林, 赵荣钦, 邢月. 中国城市碳排放的空间分布特征研究[J]. 环境经济研究, 2017, 2(1):70-81.
[11] Yang Q L, Zhao R Q, Xing Y, et al. Spatial distribution characteristics of carbon emissions in China’ s cities[J]. Journal of Environmental Economics, 2017, 2(1):70-81.
[12] 景真燕. 城市住宅碳排放影响因素分析及改进对策研究——以重庆市为例[D]. 重庆:重庆交通大学, 2016.
[12] Jing Z Y. Study on the impact of urban eesidential carbon emissions factors and countermeasures—taking Chongqing as an example[J]. Chongqing:Chongqing Jiaotong University, 2016.
[13] 尹茁. 基于夜光遥感数据的GDP时空预测分析[D]. 阜新: 辽宁工程技术大学, 2021.
[13] Yi Z. Spatiotemporal prediction analysis of GDP based on night-light remote sensing data[D]. Fuxin: Liaoning Technical University, 2021.
[14] 马瑞雪, 付波霖, 何宏昌, 等. 基于夜光遥感的GDP空间化建模及动态分析——以河南省为例[J]. 桂林理工大学学报, 2020, 40(3):557-567.
[14] Ma R X, Fu B L, He H C, et al. GDP spatial model and dynamic analysis based on night-time light imagery:A case from Henan[J]. Journal of Guilin University of Technology, 2020, 40(3):557-567.
[15] Liu J, Tong D, Zheng Y, et al. Carbon and air pollutant emissions from China’s cement industry 1990-2015:Trends,evolution of technologies,and drivers[J]. Atmospheric Chemistry and Physics, 2021, 21(3):1627-1647.
[16] Marconcini M, Metz-Marconcini A, Üreyen S, et al. Outlining where humans live,the world settlement footprint 2015[J]. Scientific Data, 2020, 7(1):242.
doi: 10.1038/s41597-020-00580-5 pmid: 32686674
[1] LIU Yalin. Remote sensing interpretation and analysis of the survey of the Tianshui-Longnan Railway based on realistic scene images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 227-234.
[2] DU Yi, WANG Dayang, WANG Dagang. Spatial downscaling of GPM precipitation products: A case study of Guizhou Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 111-120.
[3] WANG Zheng, JIA Gongxu, ZHANG Qingling, HUANG Yue. Impacts of COVID-19 epidemic on the spatial distribution of GDP contributed by secondary and tertiary industries in Guangdong Province in the first quarter of 2020[J]. Remote Sensing for Natural Resources, 2021, 33(3): 184-193.
[4] Hailing GU, Chao CHEN, Ying LU, Yanli CHU. Construction of regional economic development model based on satellite remote sensing technology[J]. Remote Sensing for Land & Resources, 2020, 32(2): 226-232.
[5] Jiaming LAI, Wunian YANG. Dynamic changes of vegetation cover in natural forest area of western Sichuan in recent 29 years based on RS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 132-138.
[6] Yuhai FAN, Hui WANG, Xingke YANG, Qiming PENG, Xuwen QIN, Jinzhong YANG, Shaopeng ZHANG, Furong TAN. Application of high-resolution remote sensing technology to the prospecting for rare metal mineralization belt[J]. Remote Sensing for Land & Resources, 2018, 30(1): 128-134.
[7] YANG Yuwei, DAI Xiaoai, NIU Yutian, LIU Hanhu, YANG Xiaoxia, LAN Yan. Inversion of leaf area index in Heihe Oasis based on CASI data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 179-184.
[8] YUE Mengxue, QIN Kun, ZHANG Enbing, ZHANG Ye, ZENG Cheng. Residential area extraction for high resolution remote sensing image based on data field and density clustering[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 92-97.
[9] LI Jinxiang, LI Zhiqiang, LI Shuai, WANG Wei, CHEN Yong. The method for semi-automatic extraction of residential area from high resolution remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 17-24.
[10] HU Hualong, XUE Wu, QIN Zhiyuan. Extraction of residential area from high resolution images based on wavelet texture and primitive merging[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 21-28.
[11] ZHANG Enbing, QIN Kun, YUE Mengxue, ZHANG Ye, ZENG Cheng. Feature description and extraction of residential area based on variogram function and grid division[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 149-155.
[12] YU Deqing, YU Shuchen, HE Qiuhua, LI Chang'an, WEI Chuanyi. Monitoring of Dongting Lake atrophy in the past 100 years by combining historical map and remote sensing technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 116-122.
[13] LI Feng, MI Xiaonan, LIU Jun, LIU Xiaoyang. Spatialization of GDP in Beijing using NPP-VIIRS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 19-24.
[14] LI Zongguang, HU Deyong, LI Jihe, CEN Jian. Simulation and spatialization of GDP in poverty areas based on night light imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 168-174.
[15] XU Jianhui, SHU Hong, LI Yang. Mapping of monthly mean snow depth in Northern Xinjiang using a multivariate nonlinear regression Kriging model based on MODIS snow cover data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 84-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech