Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (3) : 233-239     DOI: 10.6046/zrzyyg.2023066
|
Correlation analysis between nonmetallic mines for building materials and social economy in the Tibet Autonomous Region
WANG Hao(), LIU Cai, CHEN Li(), YANG Jinzhong, WEN Jing, SUN Yaqin, AN Na, ZHOU Yingjie, SHAO Zhitao
China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(8524 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Based on the survey and monitoring results obtained using satellite remote sensing technology, this study investigated the nonmetallic mines for building materials under the jurisdiction of municipal administrative units in the Tibet Autonomous Region. It conducted an exploratory analysis by correlating the land damage, the restoration and control of mine environments, and the damage scales of mining areas in these mines with typical socio-economic factors like gross regional product (GRP), population, zoning area, and population density. The results show that higher GRP or population density is associated with a larger mining scale of nonmetallic mineral resources for building materials. This conclusion provides a research basis for predicting the mining scales of nonmetallic mines for building materials in certain regions in China’s western provinces and achieving harmonious development between the geological environments of such mines and socio-economic construction.

Keywords Tibet Autonomous Region      nonmetallic mines for building materials      social economy      correlation analysis     
ZTFLH:  TP79  
Issue Date: 03 September 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hao WANG
Cai LIU
Li CHEN
Jinzhong YANG
Jing WEN
Yaqin SUN
Na AN
Yingjie ZHOU
Zhitao SHAO
Cite this article:   
Hao WANG,Cai LIU,Li CHEN, et al. Correlation analysis between nonmetallic mines for building materials and social economy in the Tibet Autonomous Region[J]. Remote Sensing for Natural Resources, 2024, 36(3): 233-239.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023066     OR     https://www.gtzyyg.com/EN/Y2024/V36/I3/233
Fig.1  Flow chart of data acquisition
Fig.2  Typical compression damage patterns
Fig.3  Typical restoration and governance change patterns
Fig.4  Schematic diagram of mining geological environment
Fig.5  Schematic diagram of stope scale
Fig.6  Scatter plot of related elements
Pearson
相关性
地区生
产总值
人口 市级行政
区面积
人口密度
压占损毁面积 0.918**① 0.714 -0.505 0.865*
恢复治理面积 0.195 0.491 0.134 -0.037
Tab.1  Pearson correlation coefficient results
Fig.7  Scatter plot of related elements
Pearson
相关性
地区生
产总值
人口 市级行政
区面积
人口密度
采场挖损规模 0.886**① 0.758* -0.466 0.804*
Tab.2  Pearson correlation coefficient results
[1] 席蒙蒙, 陈朴. 环境友好社会进步经济发展:西藏生态现代化的三维审视[J]. 西藏研究, 2019(6):135-143.
[1] Xi M M, Chen P. Environmental friendly,society progressive and economic development: A three-dimensional survey of Tibet’s ecological modernization[J]. Tibetan Studies, 2019 (6):135-143.
[2] 王昊, 杨金中, 安娜, 等. 矿山环境危害之浅见[J]. 华北自然资源, 2019(1):105-108.
[2] Wang H, Yang J Z, An N, et al. Brief introduction of mine environmental hazard[J]. Huabei Natural Resources, 2019(1):105-108.
[3] 王海庆, 李丽, 许文佳, 等. 西藏生产矿山在用土地面积遥感调查与分析[J]. 矿产保护与利用, 2019, 39(5):146-150.
[3] Wang H Q, Li L, Xu W J, et al. Survey and analysis about using land area of producing mines in Tibet based on remote sensing[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5):146-150.
[4] 陈玲. 西藏矿山环境恢复治理现状遥感研究[J]. 矿产保护与利用, 2020, 40(1):132-137.
[4] Chen L. Remote sensing study on the present situation of mining environment rehabilitation in Tibet[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1):132-137.
[5] 王海庆, 陈玲. 西藏日喀则矿山环境恢复治理效果分析[J]. 矿业研究与开发, 2018, 38(10):111-114.
[5] Wang H Q, Chen L. Effectiveness analysis on mine environment rehabilitation in Shigatse of Tibet[J]. Mining Research and Development, 2018, 38(10):111-114.
[6] 李丽, 汪洁, 汪劲, 等. 基于高分卫星遥感数据的金属矿开发现状及环境问题研究——以江西省德兴多金属矿集区为例[J]. 中国地质调查, 2016, 3(5):60-66.
[6] Li L, Wang J, Wang J, et al. Study of metal mine development situation and environmental problems using high resolution satellite remote sensing data: A case of polymetallic ore concentration area in Dexing,Jiangxi Province[J]. Geological Survey of China, 2016, 3(5):60-66.
[7] 王昊, 安娜, 步凡, 等. 通天河沿自然保护分区矿山环境遥感调查[J]. 资源节约与环保, 2018(6):31,40.
[7] Wang H, An N, Bu F, et al. Remote sensing investigation of mine environment in Tongtian Heyan Natural Reserve[J]. Resources Economization & Environmental Protection, 2018(6):31,40.
[8] 薛庆, 吴蔚, 李名松, 等. 遥感技术在辽宁省矿山环境监测中的应用[J]. 中国地质调查, 2016, 3(5):54-59.
[8] Xue Q, Wu W, Li M S, et al. Application of remote sensing technology in mine environment monitoring in Liaoning Province[J]. Geological Survey of China, 2016, 3(5):54-59.
[9] 杨金中, 秦绪文, 聂洪峰, 等. 全国重点矿区矿山遥感监测综合研究[J]. 中国地质调查, 2015, 2(4):24-30.
[9] Yang J Z, Qin X W, Nie H F, et al. Comprehensive research on remote sensing monitoring of the national concentration zones of the important mine[J]. Geological Survey of China, 2015, 2(4):24-30.
[10] 高俊华, 邹联学, 龙欢, 等. 基于遥感动态监测的吉林省矿山地质环境及生态修复变化特征分析[J]. 自然资源遥感, 2022, 34(3):240-248.doi:10.6046/zrzyyg.2021278.
[10] Gao J H, Zou L X, Long H, et al. Analysis on characteristics of mine geological environment and ecological restoration changes in Jilin Province based on dynamic remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(3):240-248.doi:10.6046/zrzyyg.2021278.
[11] 王昊, 李丽, 刘雪, 等. 新疆东北地区矿产资源开发环境遥感监测成果[J]. 中国地质调查, 2018, 5(3):81-88.
[11] Wang H, Li L, Liu X, et al. Remote sensing investigation of mineral resources development environment in Northeastern Xinjiang[J]. Geological Survey of China, 2018, 5(3):81-88.
[12] 西藏统计局. 西藏统计年鉴2021 总第33期[M]. 北京: 中国统计出版社, 2022.
[12] Tibet Autonomous Region Bureau Statistics. Tibet statistical yearbook 2021 NO.33[M]. Beijing: China Statistics Press.
[13] 认识西藏. 西藏自治区人民政府[EB/OL].[2023-03-10]..
url: http://www.xizang.gov.cn/rsxz/
[13] Understanding Tibet. The People’s Government of Tibet Autonomous Region[EB/OL].[2023-03-10]..
url: http://www.xizang.gov.cn/rsxz/
[14] 西藏自治区第七次全国人口普查主要数据公报. 西藏自治区统计局[EB/OL].(2021-05-20) [2023-03-10]. http://tjj.xizang.gov.cn/xxgk/tjxx/tjgb/202105/t20210520_202889.html.
url: http://tjj.xizang.gov.cn/xxgk/tjxx/tjgb/202105/t20210520_202889.html
[14] Main Data Bulletin of the Seventh National Population Census of the Tibet Autonomous Region. Tibet Autonomous Region Bureau Statistics[EB/OL].(2021-05-20) [2023-03-10]. http://tjj.xizang.gov.cn/xxgk/tjxx/tjgb/202105/t20210520_202889.html.
url: http://tjj.xizang.gov.cn/xxgk/tjxx/tjgb/202105/t20210520_202889.html
[15] 张婧, 任刚. 城市道路交通拥堵状态时空相关性分析[J]. 交通运输系统工程与信息, 2015, 15(2):175-181.
[15] Zhang J, Ren G. Spatio-temporal correlation analysis of urban traffic congestion diffusion[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(2):175-181.
[16] 赵海龙, 张丹丹, 黄松, 等. 基于皮尔逊相关系数的海南省地闪密度与雷击故障关系分析[J]. 高压电器, 2019, 55(8):186-192.
[16] Zhao H L, Zhang D D, Huang S, et al. Analysis on the relation between cloud-to-ground lightning density and lightning trip rate in Hainan Province based on Pearson correlation Coefficient[J]. High Voltage Apparatus, 2019, 55(8):186-192.
[17] 杨帆, 冯翔, 阮羚, 等. 基于皮尔逊相关系数法的水树枝与超低频介损的相关性研究[J]. 高压电器, 2014, 50(6):21-25,31.
[17] Yang F, Feng X, Ruan L, et al. Correlation study of water tree and VLF Ttanδ based on Pearson correlation coefficient[J]. High Voltage Apparatus, 2014, 50(6):21-25,31.
[18] 游俊雄. 宏观视角下地铁建设与城市经济的关联分析[J]. 铁道运输与经济, 2022, 44(6):114-121.
[18] You J X. Correlation analysis between subway construction and urban economy from a macro perspective[J]. Railway Transport and Economy, 2022, 4 4(6):114-121.
[19] 张家权. 辽河汛期水质水量相关性分析[J]. 陕西水利, 2021(10):107-109.
[19] Zhang J Q. Correlation analysis of water quality and quantity of Liaohe River in flood season[J]. Shaanxi Water Resources, 2021(10):107-109.
[1] LI Weiyang, SHI Haijing, NIE Weiting, YANG Xinyuan. Analyzing the spatio-temporal evolution of surface temperatures in the Yanhe River basin based on the changes in surface parameters[J]. Remote Sensing for Natural Resources, 2024, 36(2): 229-238.
[2] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[3] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[4] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[5] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[6] Wen ZHANG, Yan REN, Xiaolin MA, Yijie HU. Estimation of soil moisture with drought indices in Huaihe River Basin of East China[J]. Remote Sensing for Land & Resources, 2018, 30(2): 73-79.
[7] ZHANG Qianning, TAN Shiteng, XU Zhu, HUANG Zechun. Applicability and simplification study of patch level landscape metrics based on GLC30[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 98-105.
[8] LI Li. Remote sensing bathymetric inversion for the Xisha Islands based on WorldView-2 data: A case study of Zhaoshu Island and South Island[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 170-175.
[9] YANG Yanan, WANG Jinliang, CHEN Guangjie, XI Xiaohuan, WANG Cheng. Relationship between land use pattern and water quality change in Fuxian Lake basin[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 159-165.
[10] YANG Keming, ZHOU Yujie, QI Jianwei, WANG Linwei, LIU Shiwen. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 134-139.
[11] FU Yin-Zhen, WANG Xiao-Qin, JIANG Hong. The Correlation between LAI and Vegetation Index of Masson Pine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 41-46.
[12] XU Yong-Ming, QIN Zhi-Hao, SHEN Yan. The Relationship Between Inter-annual Variations of Land Surface
Temperature and Climate Factors in the Yangtze River Delta
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 60-64.
[13] TIAN Shu-Fang, HONG You-Tang, QIN Xu-Wen. A REMOTE SENSING APPROACH TO THE DEPTH
OF THE HIGHLY CONCENTRATED SALT LAKE
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(1): 26-30.
[14] XU Rui-song. THE REMOTE SENSING SURVEY OF OIL AND GAS RESOURCES IN THE SOUTH CHINA SEA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(1): 13-15.
[15] WAN Yu-qing, ZHANG Feng-li, YAN Yong-zhong . THE METHODOLOGICAL RESEARCH OF USING SPECTROMETER DATA TO PREDICT SOIL CONTENT OF WATER[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(2): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech