Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2002, Vol. 14 Issue (4) : 51-54     DOI: 10.6046/gtzyyg.2002.04.11
Technology and Methodology |
THE BEST DENSITY SEPARATION METHOD FOR EXTRACTING ROCK INFORMATION FROM REMOTE SENSING IMAGE
WU De-wen, ZHANG Yuan-fei, ZHU Gu-chang
Center for Remote Sensing in Non-ferrous Geology, Hebei 065201, China
Download: PDF(327 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The authors introduced the best separation method for ordered geological variables in mathematical geology into the extraction of rock information from remote sensing image, and then changed and improved the method, thus forming the best density separation method for remote sensing image. On such a basis, computer programming was performed to actualize the improved method. This paper deals mainly with the basic principle, actualizing means and applications of the method.
Keywords        Discretization      Examination of normal distribution      Hybrid Bayesian network classifier      Multi-source remote sensing data      Land classification     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Feng
GAO Zhao-Liang
Cite this article:   
LI Feng,GAO Zhao-Liang. THE BEST DENSITY SEPARATION METHOD FOR EXTRACTING ROCK INFORMATION FROM REMOTE SENSING IMAGE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(4): 51-54.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2002.04.11     OR     https://www.gtzyyg.com/EN/Y2002/V14/I4/51


[1] 余金生,等.地质因子分析[M].北京:地质出版社,1985.





[2] 王学仁,等.地质数据的多变量统计分析[M].北京:科学出版社,1986.





[3] 丰茂森,等.遥感图像数字处理[M].北京:地质出版社,1991.





[4] 周成虎,等.遥感影像地学理解与分析[M].北京:科学出版社,2001.





[5] 刘庆生,等.有序岩石遥感信息的最优分割[J].国土资源遥感,1999,(2):50-54.
[1] Wei ZHANG, Jianwei QI, Ying CHEN, Xu HAN. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
[2] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[3] Yangming WANG, Jingfa ZHANG, Zhirong LIU, Xuhui SHEN. Active faults interpretation of Shannan area in Tibet based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 230-237.
[4] Xiaogang HOU, Zhaojun ZHENG, Shuai LI, Xuehua CHEN, Yu CUI. Generation of daily cloudless snow cover product in the past 15 years in Xinjiang and accuracy validation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 214-222.
[5] CHEN Danlei, LIU Guoxiang, WANG Xiaowen, WANG Lei, PU Huilong. Inversion of fault slip parameters based on DInSAR and automated fault model discretization method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 25-30.
[6] WANG Yong, CHEN Yuhui. Cultivated land gradation study of Changping District in Beijing based on fuzzy clustering model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 138-143.
[7] DONG Lina, ZHANG Wei, WANG Xue, CHEN Ling, YANG Jinzhong, MO Zifen. Remote sensing geological interpretation and uranium prospecting perspective analysis of Shengyuan volcanic basin in Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 102-108.
[8] LIU Xinxing, CHEN Jianping, ZENG Min, DAI Jingjing, PEI Yingru, REN Mengyi, WANG Na. Geological structural interpretation of Qiangduo area in Tibet based on multi-source remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 154-160.
[9] XU Xu, GAO Ang, ZHU Pingping, ZHOU Zengke. Valuation of ecosystem services based on multi-source remote sensing data:A case study of Hebei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 180-186.
[10] LI Feng, GAO Zhao-Liang. A Hybrid Bayesian Network Classifier for Multi-source Remote Sensing Data in Land Use Classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 47-52.
[11] YANG Li-Juan, WU Sheng-Li, ZHANG Zhong-Jun.
A Model Analysis Using a Combined Active/Passive Microwave Remote Sensing Approach for Soil Moisture Retrieval
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 53-58.
[12] LIN Ting, LIU Xiang-Nan, TAN Zheng. Zn Contamination Monitoring Model of Rice Based on ICA and Hyperspectral Index[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 59-64.
[13] YANG Shu-Wen, LI Ming-Yong, LIU Tao, SUN Jian-Guo, DUAN Huan-E. A Method of Alluvial Fan Automatic Extraction from TM Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 65-69.
[14] LI Na, ZHAO Hui-Jie. An Improved Independent Component Analysis Method for Unsupervised Classification of Hyperspectral Data  [J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 70-74.
[15] HUANG Miao-Fen, MAO Zhi-Hua, XING Xu-Feng, SUN Zhong-Ping, ZHAO Zu-Long, HUANG Wei.
A Model for Water Surface Temperature Retrieval from HJ-1B/IRS Data and Its Application
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech