Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2008, Vol. 20 Issue (2) : 18-21     DOI: 10.6046/gtzyyg.2008.02.05
Technology and Methodology |
A METHOD FOR REMOTE SENSING IMAGE CLASSIFICATION BASED ON WEIGHT AND MIXED-PIXEL MODELS
HE Hai-qing 1,2,LI Fa-bin 3 ,LI He-chao 3 ,WANG Yong 1,2
1. Graduate University of Chinese Academy of Sciences,Beijing 100049,China;2.Institute of Mountain Hazards and Environment,CAS,Chengdu 610041,China;3.Sichuan Research Institute of Territorial Surveying and Planning,Chengdu 610031,China
Download: PDF(824 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

A method for remote sensing image classification based on weight and mixed-pixel models is proposed in this paper. Combined with the available spectral mixed-pixel models,this method classifies the pixels by weighting and averaging with the abundances and weight factors of the categories according to practical application. To verify its feasibility,the authors carried out the classification of land cover with SPOT-5 data. The results show that the method can improve the accuracy of remote sensing image classification and even has higher application value under certain conditions.

Keywords Artificial neural network      Remote sensing digital images      Classification     
: 


TP75 

 
Issue Date: 15 July 2009
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhang Baoguang
Cite this article:   
Zhang Baoguang. A METHOD FOR REMOTE SENSING IMAGE CLASSIFICATION BASED ON WEIGHT AND MIXED-PIXEL MODELS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(2): 18-21.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2008.02.05     OR     https://www.gtzyyg.com/EN/Y2008/V20/I2/18
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[3] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[4] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[5] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[6] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[7] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[8] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[9] LING Xiao, LIU Jiamei, WANG Tao, ZHU Yueqin, YUAN Lingling, CHEN Yangyang. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources, 2021, 33(2): 172-181.
[10] MENG Qing, BAI Hongying, ZHAO Ting, GUO Shaozhuang, QI Guizeng. The eco-barrier effect of Qinling Mountain on aerosols[J]. Remote Sensing for Land & Resources, 2021, 33(1): 240-248.
[11] XU Yun, XU Aiwen. Classification and detection of cloud, snow and fog in remote sensing images based on random forest[J]. Remote Sensing for Land & Resources, 2021, 33(1): 96-101.
[12] ZHANG Li, XIE Yanan, QU Chenyang, WANG Mingquan, CHANG Zheng, WANG Maohua. Estimation of electric power consumption using nighttime light remote sensing data based on K-Means city classification algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 182-189.
[13] WANG Dejun, JIANG Qigang, LI Yuanhua, GUAN Haitao, ZHAO Pengfei, XI Jing. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 236-243.
[14] WANG Yuefeng, WU Huizhi, HE Shujun, HUANG Di, BAI Chaojun. Method research of intelligentized extraction of natural resources information from Shihe District,Xinyang City,Henan Province[J]. Remote Sensing for Land & Resources, 2020, 32(4): 244-250.
[15] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech