Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (2) : 38-43     DOI: 10.6046/gtzyyg.2019.02.06
|
Research on high resolution image object detection technology based on Faster R-CNN
Qifang XIE, Guoqing YAO(), Meng ZHANG
Institute of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
Download: PDF(3775 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to improve the detection effect of the traditional algorithm on the ground objects in high resolution remote sensing images, this paper applies the deep learning object detection framework Faster R-CNN to the object detection task of high resolution remote sensing images. The airport and aircraft are used as the test scene and detection object for the experiment respectively, The Faster R-CNN framework is trained using the high-resolution remote sensing image data set to obtain the corresponding object detection model. The model is used to detect aircraft objects in high resolution remote sensing images and perform statistical analysis of the experimental results. The experimental results show that the Faster R-CNN model can entirely and accurately detect aircraft objects with an optimal F1 score of 0.976 3, and the same model can be used for object detection of multiple high resolution remote sensing images.

Keywords object detection      Faster R-CNN      convolution neural network      high resolution remote sensing image     
:  TP79  
Corresponding Authors: Guoqing YAO     E-mail: gqyao@cugb.edu.cn
Issue Date: 23 May 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qifang XIE
Guoqing YAO
Meng ZHANG
Cite this article:   
Qifang XIE,Guoqing YAO,Meng ZHANG. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land & Resources, 2019, 31(2): 38-43.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.02.06     OR     https://www.gtzyyg.com/EN/Y2019/V31/I2/38
Fig.1  Faster R-CNN framework diagram
Fig.2  RPN network structure
实验数据 拍摄地点 空间分辨率/m
全色遥感图像 北京首都机场 0.5
多光谱彩色遥感图像 上海浦东机场 2
Tab.1  Experimental data information
Fig.3  Flow chart of high resolution remote sensing image object detection experiment
Fig.4  Aircraft identification experiment training set
Fig.5  Aircraft identification experiment test results
Fig.6  Aircraft detection experiment training set
Fig.7  Test results of panchromatic remote sensing images for aircrafts
模型名称 飞机总数 正确检测飞机数 误检数 总识别数 未识别数 准确率/% 召回率/% F1分数
Faster R-CNN(Inception-Resnet-v2网络) 338 326 4 330 12 98.79 96.45 0.976 3
Faster R-CNN(Resnet-101网络) 338 291 1 292 47 99.66 86.09 0.923 8
Tab.2  Evaluation indexes of Faster R-CNN model based on panchromatic remote sensing image set
Fig.8  Test results of multispectral color remote sensing images for aircrafts
[1] 明冬萍, 骆剑承, 沈占锋 , 等. 高分辨率遥感影像信息提取与目标识别技术研究[J]. 测绘科学, 2005,30(3):18-20.
[1] Ming D P, Luo J C, Shen Z F , et al. Research on high resolution remote sensing image information extraction and target recognition technology[J]. Surveying and Mapping Science, 2005,30(3):18-20.
[2] 吴樊, 王超, 张红 , 等. 基于知识的中高分辨率光学卫星遥感影像桥梁目标识别研究[J]. 电子与信息学报, 2006,28(4):587-591.
doi:
[2] Wu F, Wang C, Zhang H , et al. Research on bridge target recognition based on knowledge of medium and high resolution optical satellite remote sensing images[J]. Journal of Electronics and Information Technology, 2006,28(4):587-591.
[3] 王文宇, 李博 . 基于eCognition的高分辨率遥感图像的自动识别分类技术[J]. 北京建筑工程学院学报, 2006,22(4):26-29.
[3] Wang W Y, Li B . Automatic recognition and classification of high resolution remote sensing images based on eCognition[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 2006,22(4):26-29.
[4] 黄凯奇, 任伟强, 谭铁牛 . 图像物体分类与检测算法综述[J]. 计算机学报, 2014,37(6):1225-1240.
[4] Huang K Q, Ren W Q, Tan T N . Summarization of image object classification and detection algorithm[J]. Journal of Computer, 2014,37(6):1225-1240.
[5] 尹宏鹏, 陈波, 柴毅 , 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016,42(10):1466-1489.
doi: 10.16383/j.aas.2016.c150823
[5] Yin H P, Chen B, Chai Y , et al. Vision-based object detection and tracking:A review[J]. Journal of Automation, 2016,42(10):1466-1489.
[6] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//IEEE Computer Vision and Pattern Recognition, 2014: 580-587.
[7] Peng X, Schmid C. Multi-region two-stream R-CNN for action detection [C]//European Conference on Computer Vision, 2016: 744-759.
[8] Girshick R. Fast R-CNN [C]//IEEE International Conference on Computer Vision, 2015: 1440-1448.
[9] He K, Zhang X, Ren S , et al. Spatial pyramid pooling in deep convo-lutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,37(9):1904-1916.
[10] Li J N, Liang X D , Shen S M .Scale-aware fast R-CNN for pedestrian detection[EB/OL].( 2015 -10-28). https://arxiv.org/pdf/1510.08160.pdf.
[11] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks [C]//International Conference on Neural Information Processing Systems, 2015: 91-99.
[12] Jiang H, Learned-Miller E. Face detection with the Faster R-CNN [C]//IEEE International Conference on Automatic Face and Gesture Recognition, 2017: 650-657.
[13] Simonyan K , Zisserman A .Very deep convolutional networks for large-scale image recognition[EB/OL].( 2014 -09-04). https://arxiv.org/pdf/1409.1556.pdf.
[14] He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition [C]//IEEE Computer Vision and Pattern Recognition, 2016: 770-778.
[15] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions [C]//IEEE Computer Vision and Pattern Recognition, 2015: 1-9.
[16] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO:Common objects in context [C]//European Conference on Computer Vision, 2014: 740-755.
[1] CHEN Jing, CHEN Jingbo, MENG Yu, DENG Yupeng, JIE Yongshi, ZHANG Yi. Detection of wind turbine towers in remote sensing based on YOLOv3 model under scale and density constraints[J]. Remote Sensing for Natural Resources, 2021, 33(3): 54-62.
[2] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[3] AN Jianjian, MENG Qingyan, HU Die, HU Xinli, YANG Jian, YANG Tianliang. The detection and determination of the working state of cooling tower in the thermal power plant based on Faster R-CNN[J]. Remote Sensing for Land & Resources, 2021, 33(2): 93-99.
[4] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[5] DONG Tiancheng, YANG Xiao, LI Hui, ZHANG Zhi, QI Rui. The extraction of plateau lakes from SAR images based on Faster R-CNN and MorphACWE model[J]. Remote Sensing for Land & Resources, 2021, 33(1): 129-137.
[6] WEI Hongyu, ZHAO Yindi, DONG Jihong. Cooling tower detection based on the improved RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(4): 68-73.
[7] WU Tong, PENG Ling, HU Yuan. Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(3): 90-97.
[8] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[9] Yongtao JIN, Xiufeng YANG, Tao GAO, Huimin GUO, Shimeng LIU. The typical object extraction method based on object-oriented and deep learning[J]. Remote Sensing for Land & Resources, 2018, 30(1): 22-29.
[10] SU Tengfei, ZHANG Shengwei, LI Hongyu. Heuristics optimized segmentation of agricultural area for high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 106-113.
[11] CAI Hongyue, YAO Guoqing. Auto-extraction of road intersection from high resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 63-71.
[12] LI Xianghui, CHEN Yixiang, WANG Haibin, ZHANG Enbing, QIN Kun. Urban area detection based on Gabor filtering and density of local feature points[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 59-64.
[13] GAO Yongzhi, CHU Yu, LIANG Wei. Remote sensing monitoring and analysis of tailings ponds in the ore concentration area of Heilongjiang Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 160-163.
[14] YANG Yun, XU Li, YAN Peili. Urban land use/cover classification of remote sensing using random forests under the framework of conditional random fields[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 51-55.
[15] ZHANG Guoying, CHENG Yiyu, LI Feng, SONG Keke. Technology of linear target detection based on ZY-3 satellite images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech