Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (2) : 19-25     DOI: 10.6046/gtzyyg.2020.02.03
|
High resolution remote sensing image object change detection based on box-plot method
Chunsen ZHANG1, Rongrong WU1, Guojun LI1, Weihong CUI2, Chenyi FENG1
1. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China
2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Download: PDF(4391 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The traditional statistics-based change detection method requires the prerequisite that the dataset should obey the Gaussian distribution, such as the iterative chi-square test based change detection method. However, the dataset does not strictly obey the Gaussian distribution, and hence the result is not ideal. A novel change detection method is proposed in this paper, which does not need any assumptions and can take change detection by its own structure. First, an incremental segmentation method is adapted to get objects. After that, spectral and contextual features are combined to calculate its cosine value. Finally, changed objects are found by the box-plot. High-resolution remote sensing images of GF-1 are used as the experimental data. The results are much better than the results of the traditional statistical object-based change detection.

Keywords change detection      high resolution remote sensing image      incremental segmentation      box-plot     
:  TP753  
Issue Date: 18 June 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chunsen ZHANG
Rongrong WU
Guojun LI
Weihong CUI
Chenyi FENG
Cite this article:   
Chunsen ZHANG,Rongrong WU,Guojun LI, et al. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.02.03     OR     https://www.gtzyyg.com/EN/Y2020/V32/I2/19
Fig.1  Flowchart ofproposedmethod
Fig.2  The flowchart of incremental segmentation
序号 特征组合 OIF
1 MEAR+G+B+NIR+MEDR+G+B+NIR+STANR+G+B+NIR 0.073 6
2 MEAR+G+B+MEDR+G+B+STANR+G+B 0.120 1
3 MEAR+G+B+NIR+MEDR+G+B+NIR+STANR+G+B+NIR+NDVI+角二阶矩 0.808 8
4 MEAR+G+B+NIR+MEDR+G+B+NIR+STANR+G+B+NIR+NDWI+NDVI+熵+角二阶矩 1.031 5
5 MEAR+G+B+NIR+MEDR+G+B+NIR+STANR+G+B+NIR+NDWI+NDVI+熵 1.628 1
6 PCA前3个主成分分量 3.827 5
Tab.1  OIF of different features combination
Fig.3  Configuration of box-plot
Fig.4  Data and change detection result
Fig.5  Subsets of the study area encompassing some objects detected as having changed with different method
评价指标 0.90 0.95 0.97 0.99
正确率 50.37 70.67 73.67 79.43
遗漏率 6.58 10.30 15.21 19.67
总体精度 58.37 77.10 80.21 85.35
Tab.2  Accuracy in different confidence(%)
评价指标 马氏距离与
卡方检测
马氏距离与
箱线图
矢量夹角余弦
与箱线图
正确率 79.43 80.25 83.14
遗漏率 19.67 16.82 17.37
总体精度 85.35 86.34 88.21
Tab.3  Accuracy assessmentof change detection(%)
Fig.6  Mahalanobis distance data graph
Fig.7  Box-whisker plot and change index based on different similarity measure method
[1] Lu D, Mausel P, Brondizio E, et al. Change detection techniques[J]. International Journal of Remote Sensing, 2004,25(12):2365-2401.
[2] 赵忠明, 孟瑜, 岳安志, 等, 遥感时间序列影像变化检测研究进展[J]. 遥感学报, 2016,20(5):1110-1125.
[2] Zhao Z M, Meng Y, Yue A Z, et al. Review of remotely sensed time series data for change detection[J]. Journal of Remote Sensing, 2016,20(5):1110-1125.
[3] Coppin P, Jonckheere I, Nackaerts K, et al. Digital change detection methods in ecosystem monitoring:A view[J]. International Journal of Remote Sensing, 2004,25(9):1565-1596.
[4] Falowski M J, Wulder M A, White J C, et al. Supporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery[J]. Progress in Physical Geography, 2009,33(3):403-423.
[5] Hay G J, Hemchandran B, Kyle C D. HEAT (home energy assessment technologies):Residential waste heat monitoring,google maps and airborne thermal imagery [C]//Proceedings of the ISPRS Conference GEOBIA.ISPRS, 2010.
[6] Fisher P F, Comber A J, Wadsworth R. Land use and land cover:Contradiction or complement[G].Fisher P F,Re-Presenting GIS.Hoboken:John Wiley and Sons Ltd., 2005: 85-98.
[7] Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images:From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,80(2):91-106.
[8] 赵敏. 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报, 2018,22(1):119-131.
[8] Zhao M. Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018,22(1):119-131.
[9] Chen G, Hay G J, Carvalho L M T,et al.Object-based change detection[J]. International Journal of Remote Sensing, 2012,33(14):4434-4457.
[10] Janalipour M, Taleai M. Building Change detection after earthquake using multi-criteria decision analysis based on extracted information from high spatial resolution satellite images[J]. International Journal of Remote Sensing, 2017,38(1):82-99.
doi: 10.1080/01431161.2016.1259673 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2016.1259673
[11] Yang X T, Liu H P, Gao X F. Land cover changed object detection in remote sensing data with medium spatial resolution[J]. International Journal of Applied Earth Observations and Geoinformation, 2015,38:129-137.
[12] Liang L, Ying G, Wen X, et al. Object-oriented change detection based on spatiotemporal relationship in multitemporal remote-sensing images [C]//36th International Symposium on Remote Sensing of Environment.IAPRS, 2015: 1241-1248.
[13] Moghadam N K, Delavar M R, Forati A. Vegetation monitoring of mashhad using an object-oriented POST classification comparison method[J]. 2017 Tehran’s Joint ISPRS Conferences of GI Research,SMPR and EOEC,IAPRS, 2017: 123-131.
[14] An K, Zhang J S, Xiao Y. Object-oriented urban dynamic monitoring:A case study of Haidian Distirict of Beijing[J]. Chinese Geographical Science, 2007,17(3):236-242.
[15] Peng D F, Zhang Y J. Object-based change detection from satellite imagery by segmentation optimization and multi-features fusion[J]. International Journal of Remote Sensing, 2017,38(13):3886-3905.
doi: 10.1080/01431161.2017.1308033 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1308033
[16] Desclée B, Bogaert P, Defourny P. Forest change detection by statistical object-based method[J]. Remote Sensing of Environment, 2006,102(1):1-11.
[17] Bontemps S, Bogaert P, Titeux N, et al. An object-based change detection method accounting for temporal dependences in time series with medium to coarse spatial resolution[J]. Remote Sensing of Environment, 2008,112(6):3181-3191.
doi: 10.1016/j.rse.2008.03.013 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425708001119
[18] 李春干, 代华兵. 基于统计检验的面向对象高分辨率遥感图像森林变化检测[J]. 林业科学, 2017,53(5):74-81.
[18] Li C G, Dai H B. Statistical object-based method for forest change detection using high-resolution remote sensing image[J]. Scientia Silvae Sinicae, 2017,53(5):74-81.
[19] 吴森, 韦灼彬, 王绍忠, 等. 基于AR模型和主成分分析的损伤识别方法[J]. 振动、测试与诊断, 2012,32(5):841-845.
[19] Wu S, Wei Z B, Wang S Z, et al. The damage identification method based on AR model and principal component analysis[J]. Journal of Vibration,Measurement and Diagnosis, 2012,32(5):841-845.
[20] Li X, Yeh A G O, Qian J, et al.A matching algorithm for detecting land use changes using case-based reasoning[J]. Photogrammetric Engineering and Remote Sensing, 2009,75(11):1319-1332
doi: 10.14358/PERS.75.11.1319 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=75&issue=11&spage=1319
[21] Im J, Jensen J R, Tullis J A. Object-based change detection using correlation image analysis and image segmentation[J]. International Journal of Remote Sensing, 2008,29(2):399-423.
[22] Ouma Y O, Tetuko J, Tatteishi R. Analysis of co-occurrence and discrete wavelet transform textures for differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery[J]. International Journal of Remote Sensing, 2008,29(12):3417-3456.
[23] Tukey J W. Exploratory data analysis[J]. Journal of the American Statistical Association, 1977,26(2):163-182.
[24] 龚晶晶, 李方林, 杨刚刚, 等. 基于Excel VBA实现箱图剔除法确定化探异常下限[J]. 物探与化探, 2013,37(5):926-933.
[24] Gong J J, Li F L, Yang G G, et.al.The application of box-plot method to determining geochemical anomaly thresholds based on VBA procedure in Excel[J]. Geophysical and Geochemical Exploration, 2013,37(5):926-933.
[1] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[2] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[3] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[4] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[5] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[6] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[7] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[8] WU Tong, PENG Ling, HU Yuan. Informal garbage dumps detection in high resolution remote sensing images based on SU-RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(3): 90-97.
[9] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[10] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[11] Qifang XIE, Guoqing YAO, Meng ZHANG. Research on high resolution image object detection technology based on Faster R-CNN[J]. Remote Sensing for Land & Resources, 2019, 31(2): 38-43.
[12] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
[13] Zhan ZHAO, Wang XIA, Li YAN. Land use change detection based on multi-source data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 148-155.
[14] Lijuan WANG, Xiao JIN, Hujun JIA, Yao TANG, Guochao MA. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
[15] Ye LYU, Xiangyun HU. Road extraction by incremental Markov random field segmentation from high spatial resolution remote sensing images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 76-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech