|
|
|
|
|
|
Evaluating the remediation effect of heavy metal pollution in the Dexing copper mine based on hyperspectral remote sensing |
WANG Jiapeng1,2( ), XU Jianguo3, SHEN Jiaxiao1,2, ZHANG Dengrong1,2( ) |
1. Institute of Remote Sensing and Earth Sciences, Hangzhou Normal University, Hangzhou 311121, China 2. Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China 3. Ningbo Yuke Land Survey, Planning and Design Co., Ltd., Ningbo 315000, China |
|
|
Abstract Evaluating the remediation effect of heavy metal pollution in mines properly and rapidly holds considerable significance for ecological restoration and rehabilitation of mines. Based on the field-measured vegetation spectra, this study analyzed the typical spectral features of the main vegetation in the Dexing copper mining area. According to the heavy metal content in the leaves of vegetation tested in the laboratory, this study analyzed the relationship between heavy metal content and red edge position-a spectral characteristic parameter. This study calculated the red edge position of the vegetation in 2003 and 2009 using 2-scene Hyperion hyperspectral data, inferring the heavy metal enrichment in the vegetation of the mining area. Furthermore, this study evaluated the remediation effect of heavy metal pollution in the mining area. The results show that satisfactory results have been achieved from the remediation of heavy metal pollution around mine tailings nos. 1 and 2 in typical reclamation areas. Compared with 2003, 2009 witnessed generally satisfactory remediation effects of heavy metal pollution, with most areas being remedied and some newly polluted areas requiring remediation. The method proposed in this study can achieve a quick and reasonable evaluation of the remediation effect of large-scale heavy metal pollution in mining areas.
|
Keywords
spectral feature
red edge position
remediation of heavy metal pollution
hyperspectrum
Dexing copper mine
|
|
Issue Date: 19 September 2023
|
|
|
[1] |
De Simoni B S, Leite M G P. Assessment of rehabilitation projects results of a gold mine area using landscape function analysis[J]. Applied Geography, 2019, 108:22-29.
doi: 10.1016/j.apgeog.2019.05.005
url: https://linkinghub.elsevier.com/retrieve/pii/S0143622817311736
|
[2] |
李国政. 绿色发展视阈下矿山地质修复模式的升级与重塑[J]. 中国矿业大学学报(社会科学版), 2019(3):92-104.
|
[2] |
Li G Z. Upgrading and reshaping of mine geological restoration mode from the perspective of green development[J]. Journal of China University of Mining and Technology(Social Sciences), 2019(3):92-104.
|
[3] |
殷亚秋, 蒋存浩, 鞠星, 等. 海南岛2018年矿山地质环境遥感评价和生态修复对策[J]. 自然资源遥感, 2022, 34(2):194-202.doi:10.6046/zrzyyg.2021136.
doi: 10.6046/zrzyyg.2021136
|
[3] |
Yin Y Q, Jiang C H, Ju X, et al. Remote sensing evaluation of mine geological environment of Hainan Island in 2018 and ecological restoration countermeasures[J]. Remote Sensing for Natural Resources, 2022, 34(2):194-202.doi:10.6046/zrzyyg.2021136.
doi: 10.6046/zrzyyg.2021136
|
[4] |
Vicenc C, Oriol O, Josep M A. RESTOQUARRY:Indicators for self-evaluation of ecological restoration in open-pit mines[J]. Ecological Indicators, 2019, 102:437-445.
doi: 10.1016/j.ecolind.2019.03.001
url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X1930175X
|
[5] |
Hou X Y, Liu S H, Zhao S, et al. Interaction mechanism between floristic quality and environmental factors during ecological restoration in a mine area based on structural equation modeling[J]. Ecological Engineering, 2018, 124:23-30.
doi: 10.1016/j.ecoleng.2018.09.021
url: https://linkinghub.elsevier.com/retrieve/pii/S0925857418303598
|
[6] |
杨灵玉, 高小红, 张威, 等. 基于Hyperion影像植被光谱的土壤重金属含量空间分布反演——以青海省玉树县为例[J]. 应用生态学报, 2016, 27(6):1775-1784.
doi: 10.13287/j.1001-9332.201606.030
|
[6] |
Yang L Y, Gao X H, Zhang W, et al. The estimating heavy metal concentrations in topsoil from vegetation reflectance spectra of Hyperion images:A case study of Yushu County,Qinghai,China[J]. Chinese Journal of Applied Ecology, 2016, 27(6):1775-1784.
|
[7] |
李盛阳, 刘志文, 刘康, 等. 航天高光谱遥感应用研究进展(特邀)[J]. 红外与激光工程, 2019, 48(3):0303001.
|
[7] |
Li S Y, Liu Z W, Liu K, et al. Advances in application of space hyperspectral remote sensing(invited)[J]. Infrared and Laser Engineering, 2019, 48(3):0303001.
doi: 10.3788/IRLA
url: http://www.opticsjournal.net/Journals/irla.htm
|
[8] |
杨璐, 高永光, 胡振琪. 铜胁迫下植被光谱变化规律研究[J]. 矿业研究与开发, 2008, 28(4):74-76.
|
[8] |
Yang L, Gao Y G, Hu Z Q. Study on spectral change of vegetation under Cu stress[J]. Mining Research and Development, 2008, 28(4):74-76.
|
[9] |
李庆亭, 杨锋杰, 张兵, 等. 重金属污染胁迫下盐肤木的生化效应及波谱特征[J]. 遥感学报, 2008, 12(2):284-290.
|
[9] |
Li Q T, Yang F J, Zhang B, et al. Biogeochemistry responses and spectral characteristics of rhus chinensis mill under heavy metal contamination stress[J]. Journal of Remote Sensing, 2008, 12(2):284-290.
|
[10] |
任红艳, 庄大方, 潘剑君, 等. 重金属污染水稻的冠层反射光谱特征研究[J]. 光谱学与光谱分析, 2010, 30(2):430-434.
|
[10] |
Ren H Y, Zhuang D F, Pan J J, et al. Study on canopy spectral characteristics of paddy polluted by heavy metals[J]. Spectroscopy and Spectral Analysis, 2010, 30(2):430-434.
|
[11] |
赵汀, 王安建, 夏江周. 洎水河流域重金属污染区五节芒叶片光谱特征响应研究[J]. 国土资源遥感, 2010, 22(2):46-54.doi:10.6046/gtzyyg.2010.02.11.
doi: 10.6046/gtzyyg.2010.02.11
|
[11] |
Zhao T, Wang A J, Xia J Z. The spectral response of typical vegetation leaves to heavy metal pollution in Jishui River basin[J]. Remote Sensing for Land and Resources, 2010, 22(2):46-54.doi:10.6046/gtzyyg.2010.02.11.
doi: 10.6046/gtzyyg.2010.02.11
|
[12] |
Liu M L, Liu X N, Wu L, et al. Wavelet-based detection of crop zinc stress assessment using hyperspectral reflectance[J]. Computers and Geosciences, 2011, 37:1254-1263.
doi: 10.1016/j.cageo.2010.11.019
url: https://linkinghub.elsevier.com/retrieve/pii/S0098300411000227
|
[13] |
陈圣波, 周超, 王晋年. 黑龙江多金属矿区植物胁迫光谱及其与金属元素含量关系研究[J]. 光谱学与光谱分析, 2012, 32(5):1310-1315.
|
[13] |
Chen S B, Zhou C, Wang J N. Vegetation stress spectra and their relations with the contents of metal elements within the plant leaves in metal mines in Heilongjiang[J]. Spectroscopy and Spectral Analysis, 2012, 32(5):1310-1315.
|
[14] |
Deventer H V, Cho M A. Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage[J]. South African Journal of Science, 2014, 110:1-12.
|
[15] |
朱叶青, 屈永华, 刘素红, 等. 重金属铜污染植被光谱响应特征研究[J]. 遥感学报, 2014, 18(2):335-352.
|
[15] |
Zhu Y Q, Qu Y H, Liu S H, et al. Spectral response of wheat and lettuce to copper pollution[J]. Journal of Remote Sensing, 2014, 18(2):335-352.
|
[16] |
Song L, Jian J, Tan D J, et al. Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area,Chongqing,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34:1-9.
doi: 10.1016/j.jag.2014.06.013
url: https://linkinghub.elsevier.com/retrieve/pii/S0303243414001469
|
[17] |
Zheng T, Liu N, Wu L, et al. Estimation of chlorophyll content in potato leaves based on spectral red edge position[J]. IFAC-Papers OnLine, 2018, 51(17):602-606.
|
[18] |
Li D, Cheng T, Zhou K, et al. WREP:A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017(129):103-117.
|
[19] |
Prabir K D, Karun K C, Laxman B, et al. A modified linear extrapolation approach towards red edge position detection and stress monitoring of wheat crop using hyperspectral data[J]. International Journal of Remote Sensing, 2014, 35(4):1432-1449.
doi: 10.1080/01431161.2013.877616
url: https://www.tandfonline.com/doi/full/10.1080/01431161.2013.877616
|
[20] |
Pu R L, Gong P, Biging G S, et al. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003(41):916-921.
|
[21] |
姚付启, 张振华, 杨润亚, 等. 基于红边参数的植被叶绿素含量高光谱估算模型[J]. 农业工程学报, 2009, 25(s2):123-129.
|
[21] |
Yao F Q, Zhang Z H, Yang R Y, et al. Hyperspectral models for estimating vegetation chlorophyll content based on red edge parameter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(s2):123-129.
|
[22] |
佘宝, 黄敬峰, 石晶晶, 等. 基于红边位置变化特征的油菜种植区域提取[J]. 农业工程学报, 2013, 29(15):145-152.
|
[22] |
She B, Huang J F, Shi J J, et al. Extracting oilseed rape growing regions based on variation characteristics of red edge position[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15):145-152.
|
[23] |
Zhu L H, Chen Z X, Wang J J, et al. Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance[J]. Marine Pollution Bulletin, 2014(86):332-341.
|
[24] |
张佳伟, 王仲林, 谭先明, 等. 利用不同红边位置算法估测玉米叶绿素含量[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4):464-472.
|
[24] |
Zhang J W, Wang Z L, Tan X M, et al. Estimation of corn chlorophyll content using different red edge position algorithms[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4):464-472.
|
[25] |
甘甫平, 刘圣伟, 周强. 德兴铜矿矿山污染高光谱遥感直接识别研究[J]. 地球科学(中国地质大学学报), 2004, 29(1):119-126.
|
[25] |
Gan F P, Liu S W, Zhou Q. Identification of mining pollution using Hyperion data at Dexing copper mine in Jiangxi Province,China[J]. Earth Science(Journal of China University of Geosciences), 2004, 29(1):119-126.
|
[26] |
付卓, 肖如林, 申文明, 等. 典型矿区土壤重金属污染对植被影响遥感监测分析——以江西省德兴铜矿为例[J]. 环境与可持续发展, 2016, 41(6):66-68.
|
[26] |
Fu Z, Xiao R L, Shen W M, et al. Monitoring and analysis of the impacts of soil heavy metal pollution on vegetation in typical mining areas using remote sensing imageries:A case study of Jiangxi Dexing copper mine[J]. Environment and Sustainable Development, 2016, 41(6):66-68.
|
[27] |
薛利红, 杨林章. 采用不同红边位置提取技术估测蔬菜叶绿素含量的比较研究[J]. 农业工程学报, 2008, 24(9):165-169.
|
[27] |
Xue L H, Yang L Z. Comparative study on estimation of chlorophyll content in spinach leaves using various red edge position extraction techniques[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(9):165-169.
|
[28] |
张永贺, 郭啸川, 褚武道, 等. 基于红边位置的木荷叶片叶绿素含量估测模型研究[J]. 红外与激光工程, 2013, 42(3):798-804.
|
[28] |
Zhang Y H, Guo X C, Chu W D, et al. Estimation model of schima superba leaf chlorophyll content based on red edge position[J]. Infrared and Laser Engineering, 2013, 42(3):798-804.
|
[29] |
马东辉, 柯长青. 南京冬季典型植被光谱特征分析[J]. 遥感技术与应用, 2016, 31(4):702-708.
|
[29] |
Ma D H, Ke C Q. Research on spectral characteristics of winter typical vegetation in Nanjing[J]. Remote Sensing Technology and Application, 2016, 31(4):702-708.
|
[30] |
吴继友, 杨旭东, 张福军, 等. 山东招远金矿区赤松针叶反射光谱红边的季节特征[J]. 遥感学报, 1997, 1(2):124-128.
|
[30] |
Wu J Y, Yang X D, Zhang F J, et al. Seasonal characteristics of spectral reflectance of korean pine leaves in the gold mine area of Zhaoyuan City in Shandong Province[J]. Journal of Remote Sensing, 1997, 1(2):124-128.
|
[31] |
张海星, 姚丽文, 熊报国, 等. 德兴铜矿1号尾矿库废弃土地生态恢复试验研究[J]. 环境与开发, 1999, 14(1):10-11.
|
[31] |
Zhang H X, Yao L W, Xiong B G, et al. Study on the eco-recover test of waste land of 1# tailings bank in Dexing copper mine[J]. Environment and Exploitation, 1999, 14(1):10-11.
|
[32] |
杨修, 高林. 德兴铜矿矿山废弃地植被恢复与重建研究[J]. 生态学报, 2001, 21(11):1932-1940.
|
[32] |
Yang X, Gao L. A study on re-vegetation in mining wasteland of Dexing copper mine,China[J]. Acta Ecologica Sinica, 2001, 21(11):1932-1940.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|