Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 284-291     DOI: 10.6046/zrzyyg.2022196
|
Evaluating the remediation effect of heavy metal pollution in the Dexing copper mine based on hyperspectral remote sensing
WANG Jiapeng1,2(), XU Jianguo3, SHEN Jiaxiao1,2, ZHANG Dengrong1,2()
1. Institute of Remote Sensing and Earth Sciences, Hangzhou Normal University, Hangzhou 311121, China
2. Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
3. Ningbo Yuke Land Survey, Planning and Design Co., Ltd., Ningbo 315000, China
Download: PDF(4549 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Evaluating the remediation effect of heavy metal pollution in mines properly and rapidly holds considerable significance for ecological restoration and rehabilitation of mines. Based on the field-measured vegetation spectra, this study analyzed the typical spectral features of the main vegetation in the Dexing copper mining area. According to the heavy metal content in the leaves of vegetation tested in the laboratory, this study analyzed the relationship between heavy metal content and red edge position-a spectral characteristic parameter. This study calculated the red edge position of the vegetation in 2003 and 2009 using 2-scene Hyperion hyperspectral data, inferring the heavy metal enrichment in the vegetation of the mining area. Furthermore, this study evaluated the remediation effect of heavy metal pollution in the mining area. The results show that satisfactory results have been achieved from the remediation of heavy metal pollution around mine tailings nos. 1 and 2 in typical reclamation areas. Compared with 2003, 2009 witnessed generally satisfactory remediation effects of heavy metal pollution, with most areas being remedied and some newly polluted areas requiring remediation. The method proposed in this study can achieve a quick and reasonable evaluation of the remediation effect of large-scale heavy metal pollution in mining areas.

Keywords spectral feature      red edge position      remediation of heavy metal pollution      hyperspectrum      Dexing copper mine     
ZTFLH:  TP79  
Issue Date: 19 September 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiapeng WANG
Jianguo XU
Jiaxiao SHEN
Dengrong ZHANG
Cite this article:   
Jiapeng WANG,Jianguo XU,Jiaxiao SHEN, et al. Evaluating the remediation effect of heavy metal pollution in the Dexing copper mine based on hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(3): 284-291.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022196     OR     https://www.gtzyyg.com/EN/Y2023/V35/I3/284
Fig.1  Location of the study area
采样点 Pb Cu Cd Mn Zn
1号尾矿库 4.4 19.0 0.15 46 21
2号尾矿库 3.5 12.0 0.10 100 36
背景值 3.1 6.9 0.08 232 25
Tab.1  Heavy metal content in leaves of thatch in different tailings reservoirs(mg·kg-1)
Fig.2  Hyperion image after atmospheric correction
Fig.3  The overall technical route
Fig.4  Spectral curves of thatch and rhus chinensis
Fig.5  Red edge position of vegetation in Dexing copper mine in 2003 and 2009
Fig.6  Comparisons of the number of pixels in the same red edge position intervals in 2003 and 2009
Fig.7  Compared with 2003, the distribution of repaired and newly polluted areas in 2009
[1] De Simoni B S, Leite M G P. Assessment of rehabilitation projects results of a gold mine area using landscape function analysis[J]. Applied Geography, 2019, 108:22-29.
doi: 10.1016/j.apgeog.2019.05.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0143622817311736
[2] 李国政. 绿色发展视阈下矿山地质修复模式的升级与重塑[J]. 中国矿业大学学报(社会科学版), 2019(3):92-104.
[2] Li G Z. Upgrading and reshaping of mine geological restoration mode from the perspective of green development[J]. Journal of China University of Mining and Technology(Social Sciences), 2019(3):92-104.
[3] 殷亚秋, 蒋存浩, 鞠星, 等. 海南岛2018年矿山地质环境遥感评价和生态修复对策[J]. 自然资源遥感, 2022, 34(2):194-202.doi:10.6046/zrzyyg.2021136.
doi: 10.6046/zrzyyg.2021136
[3] Yin Y Q, Jiang C H, Ju X, et al. Remote sensing evaluation of mine geological environment of Hainan Island in 2018 and ecological restoration countermeasures[J]. Remote Sensing for Natural Resources, 2022, 34(2):194-202.doi:10.6046/zrzyyg.2021136.
doi: 10.6046/zrzyyg.2021136
[4] Vicenc C, Oriol O, Josep M A. RESTOQUARRY:Indicators for self-evaluation of ecological restoration in open-pit mines[J]. Ecological Indicators, 2019, 102:437-445.
doi: 10.1016/j.ecolind.2019.03.001 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X1930175X
[5] Hou X Y, Liu S H, Zhao S, et al. Interaction mechanism between floristic quality and environmental factors during ecological restoration in a mine area based on structural equation modeling[J]. Ecological Engineering, 2018, 124:23-30.
doi: 10.1016/j.ecoleng.2018.09.021 url: https://linkinghub.elsevier.com/retrieve/pii/S0925857418303598
[6] 杨灵玉, 高小红, 张威, 等. 基于Hyperion影像植被光谱的土壤重金属含量空间分布反演——以青海省玉树县为例[J]. 应用生态学报, 2016, 27(6):1775-1784.
doi: 10.13287/j.1001-9332.201606.030
[6] Yang L Y, Gao X H, Zhang W, et al. The estimating heavy metal concentrations in topsoil from vegetation reflectance spectra of Hyperion images:A case study of Yushu County,Qinghai,China[J]. Chinese Journal of Applied Ecology, 2016, 27(6):1775-1784.
[7] 李盛阳, 刘志文, 刘康, 等. 航天高光谱遥感应用研究进展(特邀)[J]. 红外与激光工程, 2019, 48(3):0303001.
[7] Li S Y, Liu Z W, Liu K, et al. Advances in application of space hyperspectral remote sensing(invited)[J]. Infrared and Laser Engineering, 2019, 48(3):0303001.
doi: 10.3788/IRLA url: http://www.opticsjournal.net/Journals/irla.htm
[8] 杨璐, 高永光, 胡振琪. 铜胁迫下植被光谱变化规律研究[J]. 矿业研究与开发, 2008, 28(4):74-76.
[8] Yang L, Gao Y G, Hu Z Q. Study on spectral change of vegetation under Cu stress[J]. Mining Research and Development, 2008, 28(4):74-76.
[9] 李庆亭, 杨锋杰, 张兵, 等. 重金属污染胁迫下盐肤木的生化效应及波谱特征[J]. 遥感学报, 2008, 12(2):284-290.
[9] Li Q T, Yang F J, Zhang B, et al. Biogeochemistry responses and spectral characteristics of rhus chinensis mill under heavy metal contamination stress[J]. Journal of Remote Sensing, 2008, 12(2):284-290.
[10] 任红艳, 庄大方, 潘剑君, 等. 重金属污染水稻的冠层反射光谱特征研究[J]. 光谱学与光谱分析, 2010, 30(2):430-434.
[10] Ren H Y, Zhuang D F, Pan J J, et al. Study on canopy spectral characteristics of paddy polluted by heavy metals[J]. Spectroscopy and Spectral Analysis, 2010, 30(2):430-434.
[11] 赵汀, 王安建, 夏江周. 洎水河流域重金属污染区五节芒叶片光谱特征响应研究[J]. 国土资源遥感, 2010, 22(2):46-54.doi:10.6046/gtzyyg.2010.02.11.
doi: 10.6046/gtzyyg.2010.02.11
[11] Zhao T, Wang A J, Xia J Z. The spectral response of typical vegetation leaves to heavy metal pollution in Jishui River basin[J]. Remote Sensing for Land and Resources, 2010, 22(2):46-54.doi:10.6046/gtzyyg.2010.02.11.
doi: 10.6046/gtzyyg.2010.02.11
[12] Liu M L, Liu X N, Wu L, et al. Wavelet-based detection of crop zinc stress assessment using hyperspectral reflectance[J]. Computers and Geosciences, 2011, 37:1254-1263.
doi: 10.1016/j.cageo.2010.11.019 url: https://linkinghub.elsevier.com/retrieve/pii/S0098300411000227
[13] 陈圣波, 周超, 王晋年. 黑龙江多金属矿区植物胁迫光谱及其与金属元素含量关系研究[J]. 光谱学与光谱分析, 2012, 32(5):1310-1315.
[13] Chen S B, Zhou C, Wang J N. Vegetation stress spectra and their relations with the contents of metal elements within the plant leaves in metal mines in Heilongjiang[J]. Spectroscopy and Spectral Analysis, 2012, 32(5):1310-1315.
[14] Deventer H V, Cho M A. Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage[J]. South African Journal of Science, 2014, 110:1-12.
[15] 朱叶青, 屈永华, 刘素红, 等. 重金属铜污染植被光谱响应特征研究[J]. 遥感学报, 2014, 18(2):335-352.
[15] Zhu Y Q, Qu Y H, Liu S H, et al. Spectral response of wheat and lettuce to copper pollution[J]. Journal of Remote Sensing, 2014, 18(2):335-352.
[16] Song L, Jian J, Tan D J, et al. Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area,Chongqing,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 34:1-9.
doi: 10.1016/j.jag.2014.06.013 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243414001469
[17] Zheng T, Liu N, Wu L, et al. Estimation of chlorophyll content in potato leaves based on spectral red edge position[J]. IFAC-Papers OnLine, 2018, 51(17):602-606.
[18] Li D, Cheng T, Zhou K, et al. WREP:A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017(129):103-117.
[19] Prabir K D, Karun K C, Laxman B, et al. A modified linear extrapolation approach towards red edge position detection and stress monitoring of wheat crop using hyperspectral data[J]. International Journal of Remote Sensing, 2014, 35(4):1432-1449.
doi: 10.1080/01431161.2013.877616 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2013.877616
[20] Pu R L, Gong P, Biging G S, et al. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003(41):916-921.
[21] 姚付启, 张振华, 杨润亚, 等. 基于红边参数的植被叶绿素含量高光谱估算模型[J]. 农业工程学报, 2009, 25(s2):123-129.
[21] Yao F Q, Zhang Z H, Yang R Y, et al. Hyperspectral models for estimating vegetation chlorophyll content based on red edge parameter[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(s2):123-129.
[22] 佘宝, 黄敬峰, 石晶晶, 等. 基于红边位置变化特征的油菜种植区域提取[J]. 农业工程学报, 2013, 29(15):145-152.
[22] She B, Huang J F, Shi J J, et al. Extracting oilseed rape growing regions based on variation characteristics of red edge position[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15):145-152.
[23] Zhu L H, Chen Z X, Wang J J, et al. Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance[J]. Marine Pollution Bulletin, 2014(86):332-341.
[24] 张佳伟, 王仲林, 谭先明, 等. 利用不同红边位置算法估测玉米叶绿素含量[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4):464-472.
[24] Zhang J W, Wang Z L, Tan X M, et al. Estimation of corn chlorophyll content using different red edge position algorithms[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4):464-472.
[25] 甘甫平, 刘圣伟, 周强. 德兴铜矿矿山污染高光谱遥感直接识别研究[J]. 地球科学(中国地质大学学报), 2004, 29(1):119-126.
[25] Gan F P, Liu S W, Zhou Q. Identification of mining pollution using Hyperion data at Dexing copper mine in Jiangxi Province,China[J]. Earth Science(Journal of China University of Geosciences), 2004, 29(1):119-126.
[26] 付卓, 肖如林, 申文明, 等. 典型矿区土壤重金属污染对植被影响遥感监测分析——以江西省德兴铜矿为例[J]. 环境与可持续发展, 2016, 41(6):66-68.
[26] Fu Z, Xiao R L, Shen W M, et al. Monitoring and analysis of the impacts of soil heavy metal pollution on vegetation in typical mining areas using remote sensing imageries:A case study of Jiangxi Dexing copper mine[J]. Environment and Sustainable Development, 2016, 41(6):66-68.
[27] 薛利红, 杨林章. 采用不同红边位置提取技术估测蔬菜叶绿素含量的比较研究[J]. 农业工程学报, 2008, 24(9):165-169.
[27] Xue L H, Yang L Z. Comparative study on estimation of chlorophyll content in spinach leaves using various red edge position extraction techniques[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(9):165-169.
[28] 张永贺, 郭啸川, 褚武道, 等. 基于红边位置的木荷叶片叶绿素含量估测模型研究[J]. 红外与激光工程, 2013, 42(3):798-804.
[28] Zhang Y H, Guo X C, Chu W D, et al. Estimation model of schima superba leaf chlorophyll content based on red edge position[J]. Infrared and Laser Engineering, 2013, 42(3):798-804.
[29] 马东辉, 柯长青. 南京冬季典型植被光谱特征分析[J]. 遥感技术与应用, 2016, 31(4):702-708.
[29] Ma D H, Ke C Q. Research on spectral characteristics of winter typical vegetation in Nanjing[J]. Remote Sensing Technology and Application, 2016, 31(4):702-708.
[30] 吴继友, 杨旭东, 张福军, 等. 山东招远金矿区赤松针叶反射光谱红边的季节特征[J]. 遥感学报, 1997, 1(2):124-128.
[30] Wu J Y, Yang X D, Zhang F J, et al. Seasonal characteristics of spectral reflectance of korean pine leaves in the gold mine area of Zhaoyuan City in Shandong Province[J]. Journal of Remote Sensing, 1997, 1(2):124-128.
[31] 张海星, 姚丽文, 熊报国, 等. 德兴铜矿1号尾矿库废弃土地生态恢复试验研究[J]. 环境与开发, 1999, 14(1):10-11.
[31] Zhang H X, Yao L W, Xiong B G, et al. Study on the eco-recover test of waste land of 1# tailings bank in Dexing copper mine[J]. Environment and Exploitation, 1999, 14(1):10-11.
[32] 杨修, 高林. 德兴铜矿矿山废弃地植被恢复与重建研究[J]. 生态学报, 2001, 21(11):1932-1940.
[32] Yang X, Gao L. A study on re-vegetation in mining wasteland of Dexing copper mine,China[J]. Acta Ecologica Sinica, 2001, 21(11):1932-1940.
[1] DU Cheng, LI Delin, LI Genjun, YANG Xuesong. Application and exploration of dissolved oxygen inversion of plateau salt lakes based on spectral characteristics[J]. Remote Sensing for Natural Resources, 2021, 33(3): 246-252.
[2] Benzuo YAO, Fang HE. Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction[J]. Remote Sensing for Land & Resources, 2019, 31(3): 59-64.
[3] ZHA Dongping, SHEN Zhan, LIU Zugen, LIAO Bing, WANG Wei. Changes of ecological environment in the Dexing copper mine based on TM images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 109-114.
[4] GUO Xi, YE Yingcong, XIE Biyu, KUANG Lihua, XIE Wen. Inversion of available nitrogen content in hilly paddy soil of southern China based on hyperspectral characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 94-99.
[5] BIE Xiaojuan, ZHANG Tingbin, SUN Chuanmin, GUO Na. Study of methods for extraction of remote sensing information of rocks and altered minerals from Luobusha ophiolite in east Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 72-78.
[6] HE Liangzhu, HONG Jinyi, ZHANG Jianguo, ZOU Shengwu, ZHU Lili. Research on extraction of land information used by mining development based on IKONOS remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 150-154.
[7] LIANG Shu-neng, GAN Fu-ping, YAN Bo-kun, WANG Run-sheng, YANG Su-ming, ZHANG Zhi-jun. Relationship Between Composition and Spectral Feature of Muscovite[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 111-115.
[8] HAO Li-na, ZHANG Zhi, HE Wen-xi, CHEN Teng. Tailings Reservoir Recognition Factors of the High Resolution Remote Sensing Image in Southeastern Hubei[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 154-158.
[9] SUN Ming, SHEN Wei-shou, XIE Min, LI Hai-dong, GAO Fei. The Identification of Grassland Types in the Source Region of the Yarlung Zangbo River Based on Spectral Features[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 83-89.
[10] SHU Le, ZHANG Qin-Yu, ZHU Jun, ZHANG Deng-Rong. A General Approach for Suppressing Vegetation in Optical Remotely Sensed Imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 38-42.
[11] LONG Juan, GONG Zhao-Ning, GUO Xiao-Yu, ZHAO Wen-Ji. Information Extraction of Wetland Aquatic Vegetation Based on Spectral Characteristics[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 125-129.
[12] ZHAO Ting, WANG An-Jian, XIA Jiang-Zhou, LIU Su-Hong. The Spectral Response of Typical Vegetation Leaves to Heavy
Metal Pollution in Jishui River Basin
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 46-54.
[13] LI Xiang, YU Le, DONG Chuan-Wan, ZHANG Deng-Rong. An Analysis of Emissivity Characteristics of Typical Igneous Rocks in Xinchang Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(2): 68-72.
[14] YU Yan-Mei, GAN Fu-Ping, ZHOU Ping, CHENG Si-Si, WANG Zhi-Yi. A COMPARISON OF SPECTRAL FEATURES BETWEEN LUNAR AND EARTH’S ROCKS AND MINERALS AND A BRIEF INTRODUCTION TO THE INFORMATION EXTRACTION METHODS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 45-48.
[15] YANG Fei, ZHANG Bai, LIU Zhi-Meng, LIU Dian-Wei, WANG Zong-Meng, SONG Kai-Shan. A STUDY OF CORN FPAR ESTIMATION FROM HYPERSPECTRAL DATA BASED ON PCA APPROACH AND NEAR-INFRARED SHORTWAVE BANDS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(4): 9-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech