Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (3) : 154-158     DOI: 10.6046/gtzyyg.2012.03.27
Technology Application |
Tailings Reservoir Recognition Factors of the High Resolution Remote Sensing Image in Southeastern Hubei
HAO Li-na1,2, ZHANG Zhi2, HE Wen-xi2, CHEN Teng2
1. Faculty of Information Engineering, China University of Geosciences, Wuhan 430074, China;
2. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Download: PDF(1121 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Tailings with the characteristics of very small particles determine their high reflectivity of each band in remote sensing images. The accumulation process of the tailings determines their unique surface texture, including parallel zoning texture features and radial texture features. The authors mainly studied spectral features, texture features and some other features such as roads, mine buildings, reservoirs distribution and their geographical position which are associated with the tailings reservoir, and established the comprehensive recognition factors of the tailings reservoir in high resolution remote sensing image in this paper. On the basis of these factors, the tailings reservoirs can be identified and their scales can be preliminary determined from WorldView-2 images.
Keywords object-oriented      projective interactive partition      road change detection      multi-scale segmentation      remote sensing(RS)     
:  TP79  
Issue Date: 20 August 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Zhao-yi
ZUO Xiao-qing
HUANG Liang
LIU Jing
Cite this article:   
LU Zhao-yi,ZUO Xiao-qing,HUANG Liang, et al. Tailings Reservoir Recognition Factors of the High Resolution Remote Sensing Image in Southeastern Hubei[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 154-158.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.03.27     OR     https://www.gtzyyg.com/EN/Y2012/V24/I3/154
[1] 曾小华, 连永牢. 人工矿床分类探讨[J]. 金属矿山, 2010(5): 29-33. Zeng X H, Lian Y L.Discussion on Classification of Artificial Deposit[J].Metal Mine,2010(5):29-33(in Chinese with English Abstract).
[2] 刘忠明,孔繁河,刘晓妮,等.鄂东南金属矿山尾矿资源调查及保护、开发利用建议[J].资源环境与工程,2009,23(4):473-476. Liu Z M,Kong F H,Liu X N,et al. Suggestions on Tailings Resources Investigation,Protection,Development and Utilization of Metal Mine in Southeastern Hubei[J].Resources Environment and Engineering,2009,23(4):473-476(in Chinese with English Abstract).
[3] 刘忠明,刘晓妮,杨培,等.鄂东南金属矿山尾矿堆积现状及其基本特征[J].矿冶,2009,18(1):5-9. Liu Z M,Liu X N,Yang P, et al.Present Status and Basic Characteristics of Tailings Accumulation of Metal Mine in Southeastern Hubei[J].Mining and Metallurgy,2009,18(1):5-9(in Chinese with English Abstract).
[4] 刘忠明,何洪才,刘晓妮,等.鄂东南金属矿山尾矿物质成分初步研究[J].矿冶,2010,19(1):7-12. Liu Z M,He H C,Liu X N,et al.Preliminary Study on Material Composition of Tailings in Metal Mines,Southeastern Hubei Province[J].Mining and Metallurgy,2010,19(1):7-12(in Chinese with English Abstract).
[5] 袁建星,万嘉若,王成道.纹理模型和纹理识别[J].环境遥感,1988,3(2):152-157. Yuan J X,Wan J R,Wang C D.Texture Models and Texture Recognition[J].Remote Sensing of Environment,1988,3(2):152-157(in Chinese with English Abstract).
[6] 洪专,孔铭.尾矿库资源开发应注意的问题[J].矿业工程,2003,1(3):41-44. Hong Z,Kong M.Issues About Recovery of Useful Minerals Contained in Tailings[J].Mining Engineering, 2003,1(3):41-44(in Chinese with English Abstract).
[7] 蔡嗣经,杨鹏.金属矿山尾矿问题及其综合利用与治理[J].中国工程科学,2000,2(4):89-92. Cai S J,Yang P.Tailings Problems and Tailings Utilization and Treatments in the Metal Mines[J].Engineering Science,2000,2(4):89-92(in Chinese with English Abstract).
[8] Schimmer R.A Remote Sensing and GIS Method for Detecting Land Surface Areas Covered by Copper Mill Tailings[EB/OL].[2008.11].http://www.asprs.org/a/publications/proceedings/pecora17/0030.pdf.
[9] 林玉山,张卫.尾矿库地质灾害与危险性评估[J].桂林工学院学报,2006,26(4):486-490. Ling Y S,Zhang W.Geohazard and Risk Assessment for Tailing Reservoir[J].Journal of Guilin University of Technology,2006,26(4):486-490(in Chinese with English Abstract).
[10] 徐维生,柴军瑞,李娟娟,等.尾矿库坝体加高方案排水分析[J].水土保持通报,2010,30(5):226-228. Xu W S,Chai J R,Li J J,et al.Seepage Analysis of Heightening Program for a Tailings Filling Dam[J].Bulletin of Soil and Water Conservation,2010,30(5):226-228(in Chinese with English Abstract).
[11] 彭望琭,白振平,刘湘南,等.遥感概论[M].北京:高等教育出版社,2002. Peng W L,Bai Z P,Liu X N,et al.Introduction to Remote Sensing[M].Beijing:Higher Education Press,2002(in Chinese).
[12] 梅安新,彭望琭,秦其明,等.遥感导论[M].北京:高等教育出版社,2001. Mei A X,Peng W L,Qin Q M,et al.Introduction to Remote Sensing[M].Beijing:Higher Education Press,2001(in Chinese).
[13] Chica-Olmo M,Abarca-Hernández F.Computing Geostatistical Image Texture for Remotely Sensed Data Classification[J].Computers and Geosciences,2000,26(4):373-383.
[14] 许建东,栾鹏,樊笑英,等.基于遥感影像光谱与纹理分析的地物分类——以长白山天池火山地区为例[J].地震地质,2009,31(4):607-616. Xu J D,Luan P,Fan X Y,et al.Analysis of Spectrum and Texture Information on Changbaishan Tianchi Volcano Caldera and Its Application[J].Seismology and Geology,2009,31(4):607-616(in Chinese with English Abstract).
[15] 刘龙飞,陈云浩,李京.遥感影像纹理分析方法综述与展望[J].遥感技术与应用,2003,18(6):441-445. Liu L F,Chen Y H,Li J.Texture Analysis Methods Used in Remote Sensing Images[J].Remote Sensing Technology and Application,2003,18(6):441-445(in Chinese with English Abstract).
[1] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[2] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[3] WEN Yintang, WANG Tiezhu, WANG Shutao, Wang Guichuan, LIU Shiyu, CUI Kai. Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation[J]. Remote Sensing for Natural Resources, 2021, 33(4): 64-71.
[4] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[5] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[6] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[7] Liping YANG, Meng MA, Wei XIE, Xueping PAN. Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land & Resources, 2019, 31(4): 11-19.
[8] Decai JIANG, Wenji LI, Jingmin LI, Zhaofeng BAI. Extraction of the forest fire region based on the span of ALOS PALSAR by object-oriented analysis[J]. Remote Sensing for Land & Resources, 2019, 31(4): 47-52.
[9] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[10] Yi ZHENG, Yiqiong LIN, Jian ZHOU, Weixiu GAN, Guangxuan LIN, Fanghong XU, Guanghui LIN. Mangrove inter-species classification based on ZY-3 image in Leizhou Peninsula, Guangdong Province[J]. Remote Sensing for Land & Resources, 2019, 31(3): 201-208.
[11] Linlin LIANG, Liming JIANG, Zhiwei ZHOU, Yuxing CHEN, Yafei SUN. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land & Resources, 2019, 31(2): 180-186.
[12] Ning MAO, Huiping LIU, Xiangping LIU, Yanghua ZHANG. Optimal scale selection for multi-scale segmentation based on RMNE method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 10-16.
[13] Feng FU, Xinjie WANG, Jin WANG, Na WANG, Jihong TONG. Tree species and age groups classification based on GF-2 image[J]. Remote Sensing for Land & Resources, 2019, 31(2): 118-124.
[14] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[15] Chao MA, Fei YANG, Xuecheng WANG. Extracting tea plantations in southern hilly and mountainous region based on mesoscale spectrum and temporal phenological features[J]. Remote Sensing for Land & Resources, 2019, 31(1): 141-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech