Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (3) : 88-95     DOI: 10.6046/zrzyyg.2023107
|
Assessment of urban ecological quality based on the remote sensing green index: A case study of Nanjing City
PAN Jinyin1(), WANG Shidong1, FAN Qinhe2()
1. School of Surveying,Mapping and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
2. Party School of Jiaozuo Municipal Committee of CPC, Jiaozuo 454000, China
Download: PDF(3334 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The monitoring and assessment of urban ecological quality holds critical significance for sustainable urban development. To assess the ecological quality of developed coastal cities in China in recent years, this study investigated Nanjing City based on the Sentinel-2A remote sensing images obtained in 2021. It constructed a novel remote sensing green index (RSGI) model involving green spaces, blue spaces, buildings, and impervious surfaces for assessing the ecological quality of Nanjing. First, neural network supervised classification was applied to the Sentinel-2A remote sensing images, constructing the RSGI to assess the ecological quality of various districts in Nanjing. Then, the correlations between the RSGI and urban ecological factors were analyzed using the Pearson correlation coefficient. Finally, the ecological similarity between the districts was analyzed using the agglomerative hierarchical clustering method. The results of this study are as follows: (1) The ecological quality of Nanjing presented a pattern of low RSGI values in the central portion and high RSGI values in the surrounding areas, with the highest and lowest RSGI values (0.86 and 0.38) observed in Luhe and Qinhuai districts, respectively, differing by 0.48; (2) The RSGI exhibited a positive correlation with the density of green spaces and negative correlations with the densities of population, buildings, and impervious surfaces, all at the 0.01 level; (3) With the ecological similarity of 70% as the threshold, 11 districts in Nanjing were categorized into four clusters: Qinhuai, Gulou, and Jianye districts in the first cluster, Yuhuatai and Qixia districts in the second cluster, Xuanwu and Gaochun districts in the third cluster, and the rest four districts in the fourth cluster. The results of this study can provide a scientific basis for subsequent urban planning and sustainable development of Nanjing.

Keywords RSGI      ecological quality      Pearson correlation coefficient      urban blue-green space      Nanjing City     
ZTFLH:  TP79  
Issue Date: 03 September 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinyin PAN
Shidong WANG
Qinhe FAN
Cite this article:   
Jinyin PAN,Shidong WANG,Qinhe FAN. Assessment of urban ecological quality based on the remote sensing green index: A case study of Nanjing City[J]. Remote Sensing for Natural Resources, 2024, 36(3): 88-95.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023107     OR     https://www.gtzyyg.com/EN/Y2024/V36/I3/88
Fig.1  Geographical location of the study area
数据类型 数据名称 时间 来源
栅格数据 Sentinel-2A遥感影像 2021年 欧洲航天局哥白尼开放数据访问中心
矢量数据 县界矢量边界 2015年 中国科学院资源环境科学与数据中心
栅格数据 人口密度1 km×
1 km网格数据
2019年 中国科学院资源环境科学与数据中心
栅格数据 GDP分布1 km×
1 km网格数据
2019年 中国科学院资源环境科学与数据中心
Tab.1  Data sources
生态环境质量等级 RSGI值范围
低生态环境质量 [0.0,0.2)
较低生态环境质量 [0.2,0.5)
较高生态环境质量 [0.5,0.8)
高生态环境质量 [0.8,1.0]
Tab.2  Classification standards for ecological environment quality
Fig.2  Land cover types in Nanjing City
地区 BGIP BGBP RSGI 绿色空间密度 蓝色空间密度
秦淮区 0.51 0.25 0.38 0.16 0.03
鼓楼区 0.59 0.27 0.43 0.16 0.06
建邺区 0.68 0.49 0.59 0.23 0.15
雨花台区 0.74 0.51 0.62 0.39 0.03
栖霞区 0.81 0.60 0.71 0.39 0.12
玄武区 0.84 0.62 0.73 0.50 0.04
高淳区 0.78 0.76 0.77 0.51 0.10
江宁区 0.87 0.75 0.81 0.60 0.05
溧水区 0.88 0.79 0.83 0.57 0.11
浦口区 0.89 0.80 0.84 0.61 0.09
六合区 0.91 0.82 0.86 0.66 0.08
南京市 0.86 0.75 0.81 0.57 0.08
Tab.3  Statistics of RSGI values in Nanjing and its districts
Fig.3  Ecological environment quality level map of various districts in Nanjing City
地区 RSGI 人口密度/
(人·km-2)
建筑
密度
不透水地
表面密度
蓝色空
间密度
绿色空
间密度
秦淮区 0.38 14 490 0.58 0.19 0.03 0.16
鼓楼区 0.43 17 423 0.60 0.15 0.06 0.16
建邺区 0.59 3 283 0.40 0.18 0.15 0.23
雨花台区 0.62 1 835 0.40 0.15 0.03 0.39
栖霞区 0.71 1 101 0.34 0.11 0.12 0.39
玄武区 0.73 6 755 0.33 0.10 0.04 0.50
高淳区 0.77 542 0.19 0.17 0.10 0.51
江宁区 0.81 607 0.22 0.10 0.05 0.60
溧水区 0.83 394 0.18 0.10 0.11 0.57
浦口区 0.84 650 0.18 0.08 0.09 0.61
六合区 0.86 602 0.17 0.08 0.08 0.66
Tab.4  Statistical table of ecological elements in various districts of Nanjing City
生态要素 指标 RSGI 人口密度 建筑密度 不透水地表
面密度
蓝色空间
密度
绿色空间
密度
RSGI 皮尔逊相关性 1 -0.867**① -0.981** -0.783** 0.297 0.969**
Tab.5  Pearson correlation coefficient analysis between RSGI and ecological elements
分级 人口密度/(人·km-2) GDP/(万元·km-2)
[0,600) [0,5 000)
较低 [600,1 000) [5 000,15 000)
中等 [1 000,2 000) [15 000,30 000)
较高 [2 000,10 000) [30 000,50 000)
[10 000,∞) [50 000,∞)
Tab.6  Population density and GDP grading standards
Fig.4  Population density and GDP level distribution map of Nanjing City
Fig.5  Family tree of aggregated hierarchical clustering analysis in various districts of Nanjing
[1] 梁齐云, 苏涛, 张灿, 等. 基于改进遥感生态指数的黄山市生态质量评价研究[J]. 地球物理学进展, 2022, 37(4):1448-1456.
[1] Liang Q Y, Su T, Zhang C, et al. Research on ecological quality evaluation of Huangshan City based on improved remote sensing ecological index[J]. Progress in Geophysics, 2022, 37(4):1448-1456.
[2] 赵其国, 黄国勤, 马艳芹. 中国生态环境状况与生态文明建设[J]. 生态学报, 2016, 36(19):6328-6335.
[2] Zhao Q G, Huang G Q, Ma Y Q. The ecological environment conditions and construction of an ecological civilization in China[J]. Acta Ecologica Sinica, 2016, 36(19):6328-6335.
[3] Lu C, Shi L, Zhao X, et al. Evaluation and planning of urban geological and ecological environment quality[J]. Arabian Journal of Geosciences, 2021, 14(2):71.
[4] Jiang H, Fan G, Zhang D, et al. Evaluation of eco-environmental quality for the coal-mining region using multi-source data[J]. Scientific Reports, 2022, 12(1):6623.
doi: 10.1038/s41598-022-09795-5 pmid: 35459255
[5] 孙琦, 陈宇灿, 鲁峻铭, 等. 京津冀地区城市绿色空间与生态环境质量时空演变规律探讨[J]. 太原理工大学学报, 2023, 54(2):341-349.
[5] Sun Q, Chen Y C, Lu J M, et al. Spatiotemporal evolution of urban green space and ecological quality in Beijing-Tianjin-Hebei region[J]. Journal of Taiyuan University of Technology, 2023, 54(2):341-349.
[6] 张仙, 陈理, 马燕妮, 等. 基于GIS和RS的银川市城市生态环境质量动态监测与评价[J]. 安全与环境学报, 2021, 21(6):2854-2864.
[6] Zhang X, Chen L, Ma Y N, et al. Monitoring and evaluation of ecology and environment quality of Yinchuan City based on GIS and RS[J]. Journal of Safety and Environment, 2021, 21(6):2854-2864.
[7] 杨泽康, 田佳, 李万源, 等. 黄河流域生态环境质量时空格局与演变趋势[J]. 生态学报, 2021, 41(19):7627-7636.
[7] Yang Z K, Tian J, Li W Y, et al. Spatio-temporal pattern and evolution trend of ecological environment quality in the Yellow River basin[J]. Acta Ecologica Sinica, 2021, 41(19):7627-7636.
[8] Zhou J, Liu W. Monitoring and evaluation of eco-environment quality based on remote sensing-based ecological index (RSEI) in Taihu Lake basin,China[J]. Sustainability, 2022, 14(9):5642.
[9] Maity S, Das S, Pattanayak J M, et al. Assessment of ecological environment quality in Kolkata urban agglomeration,India[J]. Urban Ecosystems, 2022, 25(4):1137-1154.
[10] Zhao X, Wang P, Yasir M, et al. Decision support system based on spatial and temporal pattern evolution of ecological environmental quality in the Yellow River Delta from 2000 to 2020[J]. Soft Computing, 2022, 26(20):11033-11044.
[11] 万虹麟, 霍飞, 牛玉芬, 等. 顾及PM2.5浓度遥感生态指数模型的沧州市区生态环境质量动态监测分析[J]. 地球物理学进展, 2021, 36(3):953-960.
[11] Wan H L, Huo F, Niu Y F, et al. Dynamic monitoring and analysis of ecological environment change in Cangzhou City based on RSEI model considering PM2.5 concentration[J]. Progress in Geophysics, 2021, 36(3):953-960.
[12] Xu F, Li H, Li Y. Ecological environment quality evaluation and evolution analysis of a rare earth mining area under different disturbance conditions[J]. Environmental Geochemistry and Health, 2021, 43(6):2243-2256.
[13] 孙灏, 马立茹, 蔡创创, 等. 干旱区地表温度和热岛效应演变研究——以宁夏沿黄城市带为例[J]. 干旱区地理, 2020, 43(3):694-705.
[13] Sun H, Ma L R, Cai C C, et al. Evolution of surface temperature and heat island effect in arid areas:A case of city belt along the Yellow River in Ningxia[J]. Arid Land Geography, 2020, 43(3):694-705.
[14] 雍凯婷, 陈增文, 李师炜, 等. 基于CEI的城市生态环境状况评价——以福建省为例[J]. 亚热带资源与环境学报, 2022, 17(1):87-94.
[14] Yong K T, Chen Z W, Li S W, et al. Evaluation of urban ecological environment:A case study of Fujian Province based on CEI[J]. Journal of Subtropical Resources and Environment, 2022, 17(1):87-94.
[15] 高周冰, 王晓瑞, 隋雪艳, 等. 基于FLUS和InVEST模型的南京市生境质量多情景预测[J]. 农业资源与环境学报, 2022, 39(5):1001-1013.
[15] Gao Z B, Wang X R, Sui X Y, et al. Multi-scenario prediction of habitat quality in Nanjing based on FLUS and InVEST models[J]. Journal of Agricultural Resources and Environment, 2022, 39(5):1001-1013.
[16] Silva D F D, Fernandes K, Pivetta L, et al. Indicadores de floresta urbana a partir de imagens aereas multiespectrais de alta resolucao[J]. Scientia Forestalis/Forest Sciences, 2005, 6(7):88-100.
[17] 陈艳拢, 王晓岚, 李恩, 等. CEM的波段选择方法研究及应用[J]. 光谱学与光谱分析, 2020, 40(12):3778-3783.
[17] Chen Y L, Wang X L, Li E, et al. Research and application of band selection method based on CEM[J]. Spectroscopy and Spectral Analysis, 2020, 40(12):3778-3783.
[18] 余亚飞, 温忠辉, 商金华, 等. 基于泉群流量与降水量相关性的明水泉域岩溶水强径流带识别[J]. 水资源保护, 2021, 37(3):56-60.
[18] Yu Y F, Wen Z H, Shang J H, et al. Identification of Karst water strong runoff zone in Mingshui spring area based on correlation between spring discharge and precipitation[J]. Water Resources Protection, 2021, 37(3):56-60.
[19] 刘海涛. 基于障碍与方向约束的密度聚类算法研究[D]. 太原: 太原科技大学, 2010.
[19] Liu H T. Research on density clustering algorithm based on obstacle and direction constraints[D]. Taiyuan: Taiyuan University of Science and Technology, 2010.
[20] 邓雅文, 侯鹏, 蒋卫国, 等. 基于多特征指标和层次聚类分析的河源区范围自动划分方法研究[J]. 地球信息科学学报, 2022, 24(3):469-482.
doi: 10.12082/dqxxkx.2022.210334
[20] Deng Y W, Hou P, Jiang W G, et al. Automatic extraction of river source region boundary based on multi-characteristic indexes and hierarchical cluster analysis[J]. Journal of Geo-Information Science, 2022, 24(3):469-482.
[21] 李慧敏, 李川, 翟祥. 高维数据聚类中相似性度量方法的研究[J]. 市场研究, 2018(6):35-38.
[21] Li H M, Li C, Zhai X. Research on similarity measurement method in high-dimensional data clustering[J]. Marketing Research, 2018(6):35-38.
[22] 赵荣钦, 黄贤金, 钟太洋, 等. 聚类分析在江苏沿海地区土地利用分区中的应用[J]. 农业工程学报, 2010, 26(6):310-314.
[22] Zhao R Q, Huang X J, Zhong T Y, et al. Application of clustering analysis to land use zoning of coastal region in Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(6):310-314.
[23] Mandal M S H, Hosaka T. Assessing cyclone disturbances (1988—2016) in the Sundarbans mangrove forests using Landsat and Google Earth Engine[J]. Natural Hazards, 2020, 102(1):133-150.
[24] 王煜, 唐力, 朱海涛, 等. 基于多源遥感数据的城市热环境响应与归因分析——以深圳市为例[J]. 生态学报, 2021, 41(22):8771-8782.
[24] Wang Y, Tang L, Zhu H T, et al. The study of urban thermal environment dynamics and attribution analysis based on multiple remote sensing dataset:In the case of Shenzhen[J]. Acta Ecologica Sinica, 2021, 41(22):8771-8782.
[25] 乔辛悦, 田国行, 刘文霞, 等. 郑州市景观水体东风渠绿藻水华污染特征及营养盐效应[J]. 山西农业大学学报(自然科学版), 2017, 37(11):811-817.
[25] Qiao X Y, Tian G H, Liu W X, et al. Contaminative characteristics and nutrient effect of green algae in the landscape waterbody of Dongfeng River in Zhengzhou City[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2017, 37(11):811-817.
[1] LI Jiayi, XU Yongming, CUI Weiping, WU Yuyang, WANG Jing, SU Boyang, JI Meng. Monitoring of nighttime light pollution in Nanjing City based on Luojia 1-01 remote sensing data[J]. Remote Sensing for Natural Resources, 2022, 34(2): 289-295.
[2] ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
[3] CHEN Zhen, XIA Xueqi, CHEN Jianping. A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City[J]. Remote Sensing for Land & Resources, 2021, 33(1): 191-198.
[4] Zhiyou QIAN, Haiyue FU, Yan WANG, Yiting ZHANG. Characteristics of urban expansion and morphological evolution in Nanjing from 2004 to 2016[J]. Remote Sensing for Land & Resources, 2019, 31(2): 149-156.
[5] Wenbing XIONG, Weihua MO, Meihua DING, Junhua WANG, Jianfei MO. Meteorological evaluation system of ecological quality based on open-source GIS technology[J]. Remote Sensing for Land & Resources, 2018, 30(2): 243-248.
[6] LI Xinyu, DU Peijun, ALIM Samat. Spatial-temporal analysis of urban heat island effect and surface parameters variation in Nanjing City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 177-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech