Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 243-248     DOI: 10.6046/gtzyyg.2018.02.33
|
Meteorological evaluation system of ecological quality based on open-source GIS technology
Wenbing XIONG1,2(), Weihua MO3, Meihua DING3, Junhua WANG3, Jianfei MO3
1.Guangxi Laibin Meteorological Bureau, Laibin 546100, China
2.Guangxi Meteorology Science and Technology Service Center, Nanning 530022, China
3.Guangxi Meteorology Disaster Reduction Research Institute, Nanning 530022, China
Download: PDF(3197 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to meet the needs of the application of ecological quality meteorological evaluation technology, the authors designed a service system by using open-source GIS(MapWinGIS) technology in C# develop environment. This system has carried out the analysis and processing of climate data according to the needs of service process. By using MapWinGIS interfaces and class libraries, this platform has achieved the design and development of GIS function. And by self-developed writing class, this platform has the function of the processing of meteorological evaluation data including the MODIS remote sensing data and index calculation, finally obtaining the comprehensive evaluation index of ecological quality by using the GIS map. This system provides a standardized work flow for the ecological quality evaluation.

Keywords open-source GIS      remote sensing      ecological quality      meteorology      evaluation      system     
:  TP311  
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenbing XIONG
Weihua MO
Meihua DING
Junhua WANG
Jianfei MO
Cite this article:   
Wenbing XIONG,Weihua MO,Meihua DING, et al. Meteorological evaluation system of ecological quality based on open-source GIS technology[J]. Remote Sensing for Land & Resources, 2018, 30(2): 243-248.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.33     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/243
Fig.1  System operation interface
Fig.2  System function menu structure
Fig.3  Components used in the system development (arrow lines represent the called logical relationships between classes)
Fig.4  Dialog box of map layer properties setting
Fig.5  Dialog box of ecological index calculation
Fig.6  Dialog box of comprehensive evaluation index
Fig.7  Dialog box of picture output
[1] 王君华, 莫伟华, 陈燕丽 , 等. 基于遥感的广西生态质量气象评价方法研究[J]. 气象科学, 2009,29(6):833-837.
doi: 10.3969/j.issn.1009-0827.2009.06.020 url: http://www.cqvip.com/Main/Detail.aspx?id=32628568
[1] Wang J H, Mo W H, Chen Y L , et al. Research on meteorological evaluation of ecological quality in Guangxi based on satellite data[J]. Scientia Meteorologica Sinica, 2009,29(6):833-837.
[2] 肖建民 . 基于Web与GIS技术的黑龙江省防汛指挥信息服务子系统的设计与实现[D]. 大连:大连理工大学, 2002.
[2] Xiao J M . Design and Realization of Flood-Control Information Service Subsystem with Web and GIS in Heilongjiang Province[D]. Dalian: Dalian University of Technology, 2002.
[3] 戴长雷, 迟宝明, 林岚 , 等. 基于GIS的地下水监测管理信息系统(GMSMIS)分析与设计[J]. 遥感技术与应用, 2005,20(6):625-629.
doi: 10.3969/j.issn.1004-0323.2005.06.017 url: http://d.wanfangdata.com.cn/Periodical/ygjsyyy200506017
[3] Dai C L, Chi B M, Lin L , et al. Analysis and design of management information systems of groundwater monitoring based on GIS[J]. Remote Sensing Technology and Application, 2005,20(6):625-629.
[4] 王学登 . 广东省水资源管理地理信息系统[J].中国农村水利水电, 2005(11):35-36.
[4] Wang X D . Guangdong Province water resources management geographic information system[J].China Rural Water and Hydropower, 2005(11):35-36.
[5] 闾国年, 李峰, 邵进达 .江苏省公路地理信息系统建设规划(上),(下)[J].交通科技, 2000(1):18-22, 2000(2):31-33.
doi: 10.3963/j.issn.1671-7570.2000.01.007 url: http://d.wanfangdata.com.cn/Periodical/sykjxx200001007
[5] Lyu G N, Li F, Shao J D. GIS construction plan of highway in Jiangsu Province,GIS construction plan of highway in Jiangsu Province (continued)[J].Transportation Science and Technology, 2000(1):18-22, 2000(2):31-33.
[6] 石红兵, 魏庆朝, 曾学贵 . 地理信息系统在勘测设计一体化软件开发过程中的应用[J].铁路航测, 2000(2):20-22.
[6] Shi H B, Wei Q C, Zeng X G . GIS application in the developing process of survey and design integration software[J].Railway Air Survey, 2000(2):20-22.
[7] 程玉, 张群, 熊英 . 基于GIS现代物流信息系统的设计[J]. 湖北工业大学学报, 2006,21(4):95-97.
[7] Cheng Y, Zhang Q, Xiong Y . A design of logistic information system based on GIS technology[J]. Journal of Hubei University of Technology, 2006,21(4):95-97.
[8] 黄治勇, 袁正腾, 万军 , 等. 基于GIS长江中游气象水文预报系统的设计[J]. 暴雨灾害, 2007,26(4):316-318.
[8] Huang Z Y, Yuan Z T, Wan J , et al. Design of meteorological and hydrological forecasting system based on GIS in the middle reaches of Yangtze River[J]. Torrential Rain and Disasters, 2007,26(4):316-318.
[9] 李良, 黄生叶 . 基于GIS的山洪灾害预警系统的设计与实现[J]. 科学技术与工程, 2006,6(17):2712-2715.
doi: 10.3969/j.issn.1671-1815.2006.17.022 url: http://d.wanfangdata.com.cn/Periodical/kxjsygc200617022
[9] Li L, Huang S Y . Design and implementation of forewarning decision system of mountain torrent base on GIS[J]. Science Technology and Engineering, 2006,6(17):2712-2715.
[10] 沙莎, 曹芸, 朱晓晨 . 基于GIS的气象灾害评估系统——干旱评估模块的研究[J].科技信息, 2009(23):5-6,13.
doi: 10.3969/j.issn.1001-9960.2009.23.001 url: http://www.cqvip.com/Main/Detail.aspx?id=31334409
[10] Sha S, Cao Y, Zhu X C . Meteorological disaster evaluation system based on GIS:Drought assessment module research[J].Science and Technology Information, 2009(23):5-6,13.
[11] 吴盛洪 . 基于GIS的气象服务监控管理平台的设计与实现[D]. 成都:电子科技大学, 2010.
[11] Wu S H . The Design and Implementation of Meteorological Services Monitoring Management Platform based on GIS[D]. Chengdu:University of Electronic Science and Technology of China, 2010.
[12] 董学士, 毕硕本, 郭文政 . 基于GIS气象查询服务系统的设计和实现[J]. 微计算机信息, 2010,26(7):146-147,137.
[12] Dong X S, Bi S B, Guo W Z . The design and implementation of meteorology inquiry service system based on GIS[J]. Control and Automation, 2010,26(7):146-147,137.
[13] 李轩, 郭安红, 庄立伟 . 基于GIS的主要农作物病虫害气象等级预报系统研究[J]. 国土资源遥感, 2012,24(1):104-109.doi: 10.6046/gtzyyg.2012.01.19.
doi: 10.6046/gtzyyg.2012.01.19 url: http://www.cqvip.com/QK/91397X/201201/41166136.html
[13] Li X, Guo A H, Zhuang L W . The main crop diseases and pests meteorology level forecast system based on GIS[J]. Remote Sensing for Land and Resources, 2012,24(1):104-109.doi: 10.6046/gtzyyg.2012.01.19.
[14] 熊文兵, 孙莹, 王艳兰 , 等. 基于GIS技术和天气雷达的短临预警平台研究[J]. 遥感技术与应用, 2012,27(3):472-478.
url: http://www.cqvip.com/QK/96858A/201203/42213419.html
[14] Xiong W B, Sun Y, Wang Y L , et al. The study of early-warning platform based GIS technology and weather Radar[J]. Remote Sensing Technology and Application, 2012,27(3):472-478.
[15] 施益强, 吴丽娜, 吴陈锋 . 基于GIS的雷达数据三维可视化与预警系统设计与实现[J]. 国土资源遥感, 2013,25(1):171-175.doi: 10.6046/gtzyyg.2013.01.30.
doi: 10.6046/gtzyyg.2013.01.30 url: 年度引用
[15] Shi Y Q, Wu L N, Wu C F . Design and implementation of a 3D visualization and early warning system for Radar data based on GIS[J]. Remote Sensing for Land and Resources, 2013,25(1):171-175.doi: 10.6046/gtzyyg.2013.01.30.
[16] 高大伟, 樊高峰, 胡永亮 , 等. FY-3气象卫星微波水汽三维可视化及其在强天气监测中的应用[J]. 国土资源遥感, 2014,26(1):139-143.doi: 10.6046/gtzyyg.2014.01.24.
doi: 10.6046/gtzyyg.2014.01.24 url: http://www.cqvip.com/QK/91397X/201401/48844665.html
[16] Gao D W, Fan G F, Hu Y L , et al. 3D visualization of humidity distribution from FY-3 MWHS and its application to severe weather monitoring[J]. Remote Sensing for Land and Resources, 2014,26(1):139-143.doi: 10.6046/gtzyyg.2014.01.24.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech