Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 203-214     DOI: 10.6046/zrzyyg.2021224
|
MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region
ZUO Lu1,2(), SUN Leigang1,2,3(), LU Junjing1,2, XU Quanhong1,2, LIU Jianfeng1,2, MA Xiaoqian1,2
1. Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang 050021, China
2. Hebei Engineering Research Center for Geographic Information Application, Shijiazhuang 050021, China
3. Julu Institute of Applied Technology, Xingtai 055250, China
Download: PDF(4467 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Ecological quality assessment is an important prerequisite for guaranteeing the harmony and stability of the production and life of human beings and the ecological environment and for achieving the sustainable development of regional social economy. It has become a new trend to quickly, accurately, and objectively assess the regional ecological quality using use remote sensing technology. This study used the MODIS data of the Beijing-Tianjin-Hebei region in 2001, 2010, and 2019 to extract four important indices, namely, NDVI (greenness), LSM (humidity), NDBSI (dryness), and LST (heat). Then, this study obtained the MODIS remote sensing ecological index (RSEIM) using the principal component analysis method to conduct a comprehensive assessment and change monitoring of the ecological quality in the Beijing-Tianjin-Hebei region over the past 20 years. The results are as follows. ① The ecological quality of the Beijing-Tianjin-Hebei region shows distinct regional differences. The Yanshan Mountain in the north and the Taihang Mountain in the west have high ecological quality, while the Zhangjiakou area in the northwestern part of Hebei Province and the urban center in the southeastern part of Hebei Province suffer low ecological quality. ② In 2001, 2010, and 2019, the average RSEIM of the Beijing-Tianjin-Hebei region was 0.556, 0.583, and 0.527, respectively, with the overall ecological quality showing a downward trend. ③ From 2001 to 2019, the area with improved and degraded ecological quality in the Beijing-Tianjin-Hebei region accounted for 20.18% and 35.69% respectively, and the ecological quality in this region showed a pattern of improvement in the northwest and degradation in the southeast. The main reasons for the ecological improvement in the northwestern part of the region are the changes in water and heat conditions, such as an increase in precipitation and temperature, and a series of man-made protection measures. The reasons for ecological degradation in the southeastern part of the Beijing-Tianjin-Hebei region mainly include the rapid advancement of urbanization and the enhancement of social and economic activities. The comprehensive assessment of regional ecological quality can be effectively achieved based on MODIS data, thus providing a reference for the green and high-quality development of regional social economy.

Keywords ecological quality      comprehensive evaluation      remote sensing monitoring      MODIS      spatial-temporal changes     
ZTFLH:  TP79  
Corresponding Authors: SUN Leigang     E-mail: zuol.14b@igsnrr.ac.cn;sunleigang3s@163.com
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lu ZUO
Leigang SUN
Junjing LU
Quanhong XU
Jianfeng LIU
Xiaoqian MA
Cite this article:   
Lu ZUO,Leigang SUN,Junjing LU, et al. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021224     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/203
指标 2001年 2010年 2019年
PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4
LST -0.353 0.923 0.139 -0.063 -0.333 0.933 0.122 -0.059 -0.392 0.914 0.068 -0.085
NDSIM -0.543 -0.327 0.538 -0.556 -0.530 -0.300 0.605 -0.513 -0.512 -0.304 0.735 -0.325
SWCI 0.552 0.180 -0.158 -0.799 0.560 0.163 -0.110 -0.804 0.561 0.158 0.099 -0.806
NDVI 0.525 0.093 0.816 0.222 0.543 0.111 0.779 0.294 0.519 0.218 0.667 0.487
特征值 0.217 0.020 0.004 0.002 0.195 0.019 0.005 0.002 0.176 0.029 0.005 0.003
特征值贡献率/% 89.31 8.25 1.77 0.67 88.33 8.76 2.03 0.88 82.81 13.74 2.19 1.26
Tab.1  Principal component analysis results of the indicators
指标 2001年 2010年 2019年
均值 标准差 均值 标准差 均值 标准差
LST 0.622 0.210 0.605 0.196 0.646 0.227
NDSIM 0.439 0.260 0.424 0.242 0.466 0.227
SWCI 0.549 0.260 0.573 0.251 0.525 0.241
NDVI 0.607 0.251 0.635 0.246 0.618 0.227
RSEIM 0.556 0.257 0.583 0.244 0.527 0.239
Tab.2  Statistics of each indictor and RSEIM
指标 2001年 2010年 2019年
LST NDSIM SWCI NDVI RSEIM LST NDSIM SWCI NDVI RSEIM LST NDSIM SWCI NDVI RSEIM
LST 1.000 -0.779 1.000 -0.745 1.000 -0.722
NDSIM 0.656 1.000 -0.971 0.618 1.000 -0.966 0.533 1.000 -0.945
SWCI -0.711 -0.970 1.000 0.987 -0.678 -0.959 1.000 0.986 -0.627 -0.931 1.000 0.979
NDVI -0.721 -0.930 0.954 1.000 0.975 -0.680 -0.921 0.952 1.000 0.974 -0.580 -0.909 0.943 1.000 0.959
平均相关度 0.696 0.852 0.879 0.868 0.928 0.658 0.833 0.863 0.851 0.918 0.580 0.791 0.834 0.811 0.901
3 a均值 LST=0.645,NDSIM=0.825,SWCI=0.858,NDVI=0.843,RSEIM=0.916
Tab.3  Statistical results of correlation coefficient between each indictor and RSEIM
Fig.1  Spatial distribution of RSEIM in the study area
Fig.2  Area and proportion of ecological quality of each grade in the study area from 2001 to 2019
Fig.3  Spatial distribution of RSEIM change in the study area
变化类别 极差 2001—2010年 2010—2019年 2001—2019年
面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/%
明显变差 -4,-3 225.72 0.10 712.40 0.33 1502.91 0.69
变差 -2,-1 32 838.31 15.13 76 358.30 35.18 75 967.23 35.00
不变 0 128 285.30 59.11 119 116.43 54.88 95 766.28 44.13
变好 1,2 55 369.04 25.51 20 841.91 9.60 42 920.70 19.78
明显变好 3,4 314.73 0.15 4.06 0.00 875.98 0.40
Tab.4  Area and proportion of ecological quality change in the study area from 2001 to 2019
Fig.4  Statistics of RSEIM of cities in the study area from 2001 to 2019
Fig.5  Change trend of climate factors form 2001 to 2019
Fig.6  Comparison of social and economic factors of cities in the study area from 2001 to 2019
指标 2001年 2010年 2019年
RSEIM LST NDVI RSEIM LST NDVI RSEIM LST NDVI
干度 NDSIM -0.971 0.656 -0.930 -0.966 0.618 -0.921 -0.945 0.533 -0.909
NDSI -0.916 0.561 -0.876 -0.908 0.523 -0.864 -0.857 0.403 -0.850
湿度 SWCI 0.987 -0.711 0.954 0.986 -0.678 0.952 0.979 -0.627 0.943
Wet 0.775 -0.549 0.685 0.736 -0.486 0.651 0.620 -0.307 0.559
Tab.5  Correlation coefficient between dryness, wetness before and after improvement and remote sensing ecological index, heat and greenness
[1] Wu J. Urban ecology and sustainability:The state-of-the-science and future directions[J]. Landscape and Urban Planning, 2014, 125:209-221.
doi: 10.1016/j.landurbplan.2014.01.018 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204614000322
[2] 樊杰, 王亚飞. 40年来中国经济地理格局变化及新时代区域协调发展[J]. 经济地理, 2019, 39(1):1-7.
[2] Fan J, Wang Y F. Pattern evolution of China’s economic geography in the past 40 years and regional coordinated development in the new era[J]. Economic Geography, 2019, 39(1):1-7.
doi: 10.2307/142491 url: https://www.jstor.org/stable/142491?origin=crossref
[3] 颜梅春, 王元超. 区域生态环境质量评价研究进展与展望[J]. 生态环境学报, 2012, 21(10):1781-1788.
[3] Yan M C, Wang Y C. Advances in the evaluation of ecological environmental quality[J]. Ecology and Environmental Sciences, 2012, 21(10):1781-1788.
[4] 梁龙武, 王振波, 方创琳, 等. 京津冀城市群城市化与生态环境时空分异及协同发展格局[J]. 生态学报, 2019, 39(4):1212-1225.
[4] Liang L W, Wang Z B, Fang C L, et al. Spatiotemporal differentiation and coordinated development pattern of urbanization and the ecological environment of the Beijing-Tianjin-Hebei urban agglomeration[J]. Acta Ecological Sinica, 2019, 39(4):1212-1225.
[5] 饶丽, 周利军, 徐聪, 等. 生态环境质量评价的内涵、方法和实践[J]. 亚热带水土保持, 2020, 32(3):37-41,54.
[5] Rao L, Zhou L J, Xu C, et al. Connotation,method and practice of the quality assessment on eco-environment[J]. Subtropical Soil and Water Conservation, 2020, 32(3):37-41,54.
[6] 马骏, 李昌晓, 魏虹, 等. 三峡库区生态脆弱性评价[J]. 生态学报, 2015, 35(21):7117-7129.
[6] Ma J, Li C X, Wei H, et al. Dynamic evaluation of ecological vulnerability in the Three Gorges Reservoir Region in Chongqing Municipality,China[J]. Acta Ecological Sinica, 2015, 35(21):7117-7129.
[7] 王毅, 谢蓉蓉, 王菲凤, 等. 基于Delphi-PSR模型的祁连山国家级自然保护区生态安全评价[J]. 山地学报, 2019, 37(3):328-336.
[7] Wang Y, Xie R R, Wang F F, et al. Evaluation on eco-security of Qilian Mountain National Nature Reserve based on Delphi-PSR model[J]. Mountain Research, 2019, 37(3):328-336.
[8] Liu G, Wang J, Li S, et al. Dynamic evaluation of ecological vulnerability in a lake watershed based on RS and GIS technology[J]. Polish Journal of Environmental Studies, 2019, 28(3):1785-1798.
doi: 10.15244/pjoes/89981 url: http://www.journalssystem.com/pjoes/Dynamic-Evaluation-of-Ecological-Vulnerability-in-the-Fuxian-Lake-Watershed-Based,89981,0,2.html
[9] He F, Gu L, Wang T, et al. The synthetic geo-ecological environmental evaluation of a coastal coal-mining city using spatiotemporal big data:A case study in Longkou,China[J]. Journal of Cleaner Production, 2017, 142:854-866.
doi: 10.1016/j.jclepro.2016.07.011 url: https://linkinghub.elsevier.com/retrieve/pii/S095965261630899X
[10] 周文英, 何彬彬. 四川省若尔盖县生态环境质量评价[J]. 地球信息科学, 2014, 16(2):314-319.
[10] Zhou W Y, He B B. Eco-environmental quality assessment of Ruoergai County in Sichuan Province based on multi-sources remote sensing data[J]. Journal of Geo-information Science, 2014, 16(2):314-319.
[11] Wang X, Cao Y, Zhong X, et al. A new method of regional eco-environmental quality assessment and its application[J]. Journal of Environmental Quality, 2012, 41(5):1393-1401.
doi: 10.2134/jeq2011.0390 url: http://doi.wiley.com/10.2134/jeq2011.0390
[12] Liu Y, Yue W, Fan P, et al. Assessing the urban environmental quality of mountainous cities:A case study in Chongqing,China[J]. Ecological Indicators, 2017, 81:132-145.
doi: 10.1016/j.ecolind.2017.05.048 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X17303035
[13] 潘洋, 巩合德, 董李勤, 等. 基于层次分析法的广西金秀地区生态环境质量综合评价[J]. 西南林业大学学报(自然科学版), 2017, 37(3):74-80.
[13] Pan Y, Gong H D, Dong L Q, et al. Comprehensive assessment of ecological environment quality in Jinxiu area based on analytic hierarchy process[J]. Journal of Southwest Foresty University(Natural Science Edition), 2017, 37(3):74-80.
[14] 赵恒谦, 贾梁, 尹政然, 等. 基于多源遥感数据的北京市通州区土地利用/覆盖与生态环境变化监测研究[J]. 地理与地理信息科学, 2019, 35(1):38-43.
[14] Zhao H Q, Jia L, Yin Z R, et al. Dynamic monitoring of land use and ecological environment based on multiple remote sensing data:A case study of Tongzhou District,Beijing[J]. Geography and Geo-information Science, 2019, 35(1):38-43.
[15] Wang S, Liu J, Yang C. Eco-environmental vulnerability evaluation in the Yellow River Basin,China[J]. Pedosphere, 2008, 18(2):171-182.
doi: 10.1016/S1002-0160(08)60005-3 url: https://linkinghub.elsevier.com/retrieve/pii/S1002016008600053
[16] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.
[16] Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecological Sinica, 2013, 33(24):7853-7862.
[17] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5):889-897.
[17] Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5):889-897.
[18] Yue H, Liu Y, Li Y, et al. Eco-environmental quality assessment in China’s 35 major cities based on remote sensing ecological index[J]. IEEE Access, 2019, 7:51295-51311.
doi: 10.1109/ACCESS.2019.2911627 url: https://ieeexplore.ieee.org/document/8692417/
[19] 茹克亚·萨吾提, 阿不都艾尼·阿不里, 李虎, 等. 基于遥感生态指数模型的阜康市生态环境动态变化监测与评价[J]. 水土保持研究, 2020, 27(1):283-297.
[19] Rukeya S, Abuduheni A, Li H, et al. Dynamic monitonring and analysis of ecological environment in Fukang City based on RSEI model[J]. Research of Soil and Water Conservation, 2020, 27(1):283-297.
[20] 方灿莹, 胡秀娟, 徐涵秋, 等. 不同城市规划的生态质量差异对比研究[J]. 地球信息科学, 2017, 19(8):1097-1107.
[20] Fang C Y, Hu X J, Xu H Q, et al. Comparison of the ecological quality between different urban plannings[J]. Journal of Geo-Information Science, 2017, 19(8):1097-1107.
[21] 吴宜进, 赵行双, 奚悦, 等. 基于MODIS的2006—2016年西藏生态质量综合评价及其时空变化[J]. 地理学报, 2019, 74(7):1438-1449.
doi: 10.11821/dlxb201907012
[21] Wu Y J, Zhao X S, Xi Y, et al. Comprehensive evaluation and spatial-temporal changes of eco-environmental quality based on MODIS in Tibet during 2006—2016[J]. Acta Geographica Sinica, 2019, 74(7):1438-1449.
[22] Xu H, Wang Y, Guan H, et al. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis[J]. Remote Sensing, 2019, 11(20):2345.
doi: 10.3390/rs11202345 url: https://www.mdpi.com/2072-4292/11/20/2345
[23] 李孝永, 匡文慧. 京津冀1980—2015年城市土地利用变化时空轨迹及未来情景模拟[J]. 经济地理, 2019, 39(3):187-194.
[23] Li X Y, Kuang W H. Spatio-temporal trajectories of urban land use change during 1980—2015 and future scenario simulation in Beijing-Tianjin-Hebei urban agglomeration[J]. Economic Geography, 2019, 39(3):187-194.
[24] Carlson T N, Ripley D A. On the relation between NDVI,fractional vegetation cover,and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3):241-252.
doi: 10.1016/S0034-4257(97)00104-1 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425797001041
[25] Feng L, Jia Z, Li Q, et al, Zhang Z. Spatiotemporal change of sparse vegetation coverage in Northern China[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(2):359-366.
doi: 10.1007/s12524-018-0912-x url: https://doi.org/10.1007/s12524-018-0912-x
[26] 郭焘, 于红博, 马梓策, 等. 基于MODIS的土壤含水量时空变化及干旱化程度分析[J]. 水土保持研究, 2019, 26(4):185-189.
[26] Guo T, Yu H B, Ma Z C, et al. Analysis of spatial and temporal variations of soil moisture content and drought degree based on MODIS[J]. Research of Soil and Water conservation, 2019, 26(4):185-189.
[27] 徐涵秋. 一种基于指数的新型遥感建筑用地及其生态环境意义[J]. 遥感技术与应用, 2007, 22(3):301-308.
[27] Xu H Q. A new index-based built-up index (IBI) and its eco-environmental significance[J]. Remote Sensing Technology and Application, 2007, 22(3):301-308.
[28] 吕颖, 刘慧平, 刘锦绣. 基于中分辨率成像光谱仪数据的建筑指数研究[J]. 测绘科学, 2015, 40(5):44-48,70.
[28] Lyu Y, Liu H P, Liu J X. Study on build-up index based on MODIS data[J]. Science of Surveying and Mapping, 2015, 40(5):44-48,70.
[29] 李霞, 徐涵秋, 李晶, 等. 基于NDSI和NDISI指数的SPOT-5影像裸土信息提取[J]. 地球信息科学学报, 2016, 18(1):117-123.
doi: 10.3724/SP.J.1047.2016.00117
[29] Li X, Xu H Q, Li J, et al. Extraction of bare soil features from SPOT-5 imagery based on NDSI and NDISI[J]. Journal of Geo-Information Science, 2016, 18(1):117-123.
[30] 杨江燕, 吴田, 潘肖燕, 等. 基于遥感生态指数的雄安新区生态质量评估[J]. 应用生态学报, 2019, 30(1):277-284.
[30] Yang J Y, Wu T, Pan X Y, et al. Ecological quality assessment of Xiong’an New Area based on remote sensing ecological index[J]. Chinese Journal of Applied Ecology, 2019, 30(1):277-284.
[31] 王静, 周伟奇, 许开鹏, 等. 京津冀地区的生态质量定量评价[J]. 应用生态学报, 2017, 28(8):2667-2676.
[31] Wang J, Zhou W Q, Xu K P, et al. Quantitative assessment of ecological quality in Beijing-Tianjin-Hebei urban megaregion,China[J]. Chinese Journal of Applied Ecology, 2017, 28(8):2667-2676.
[32] 王伟, 王秀兰, 冯仲科, 等. 基于RS与GIS的环首都经济圈生态环境质量动态评价[J]. 安徽农业大学学报, 2015, 42(2):257-262.
[32] Wang W, Wang X L, Feng Z K, et al. Dynamic evaluation of eco-environmental quality in the capital economic circle based on RS and GIS[J]. Journal of Anhui Agricultural University, 2015, 42(2):257-262.
[33] 王巍巍, 徐秋阳, 莫罹. 京津冀城镇群建成区生态环境影响评价[J]. 环境生态学, 2020, 2(5):27-34.
[33] Wang W W, Xu Q Y, Mo L. Eco-environment impact assessment of built-up area of Beijing-Tianjin-Hebei urban agglomeration[J]. Environment Ecology, 2020, 2(5):27-34.
[34] 徐勇, 黄雯婷, 靖娟利, 等. 京津冀地区植被NDVI动态变化及其与气候因子的关系[J]. 水土保持通报, 2020, 40(5):319-327.
[34] Xu Y, Huang W T, Jing J L, et al. Dynamic variation of vegetation cover and its relation with climate variables in Beijing-Tianjin-Hebei region[J]. Bulletin of Soil and Water conservation, 2020, 40(5):319-327.
[35] 陈景, 韩素卿, 肖唯文. 沧州滨海区盐碱地时空变化及治理研究[J]. 中国国土资源经济, 2018,(11):38-43.
[35] Chen J, Han S Q, Xiao W W. Study on spatio-temporal changes and rehabilitation of saline-alkali land in the coastal area of Cangzhou[J]. Natural Resource Economics of China, 2018,(11):38-43.
[36] 许月卿, 赵菲菲, 孙丕苓. 生态脆弱区土地生态安全动态评价——以河北省张家口市为例[J]. 水土保持通报, 2015, 35(5):232-238.
[36] Xu Y Q, Zhao F F, Sun P L. Evaluation of land ecological security inecological fragile area:A case study of Zhangjiakou City,Hebei Province[J]. Bulletin of Soil and Water Conservation, 2015, 35(5):232-238.
[37] 黄麟, 吴丹, 孙朝阳. 基于规划目标的京津风沙源治理区生态保护与修复效应[J]. 生态学报, 2020, 40(6):1923-1932.
[37] Huang L, Wu D, Sun C Y. The ecological effects of ecosystem conservation and restoration in Beijing-Tianjin sand source regions based on the planning objects[J]. Acta Ecological Sinica, 2020, 40(6):1923-1932.
[38] 周沙, 黄跃飞, 王光谦. 黑河流域中游地区生态环境变化特征及驱动力[J]. 中国环境科学, 2014, 34(3):766-773.
[38] Zhou S, Huang Y F, Wang G Q. Changes in the ecological environment and there determining factors in the middle Heihe River Basin[J]. China Environmental Science, 2014, 34(3):766-773.
[39] 和春兰, 普军伟, 沈金祥. 2005—2018年澜沧江下游流域景观生态安全时空变化及其驱动因素[J]. 水土保持通报, 2020, 40(4):219-227.
[39] He C L, Pu J W, Shen J X. Spatial-temporal changes and driving mechanisms of landscape ecological security in lower reaches of Lancang River during 2005—2018[J]. Bulletin of Soil and Water Conservation, 2020, 40(4):219-227.
[40] Lobser S E, Cohen W B. MODIS tasselled cap:Land cover characteristics expressed through transformed MODIS data[J]. International Journal of Remote Sensing, 2007, 28(22):5079-5101.
doi: 10.1080/01431160701253303 url: https://www.tandfonline.com/doi/full/10.1080/01431160701253303
[1] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[2] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[3] QI Zhao, TAN Bingxiang, CAO Xiaoming, YU Hang, SHEN Mingtan. Spatial-temporal dynamics of ecological carrying capacity of the northeastern margin of the Ulan Buh Desert[J]. Remote Sensing for Natural Resources, 2023, 35(1): 222-230.
[4] WANG Juan, WANG Zhihong, ZHANG Jianguo, CHU Na, LI Si, YIN Zhan. Remote sensing monitoring and impact intensity assessment of human activities in Henan national nature reserves[J]. Remote Sensing for Natural Resources, 2022, 34(4): 235-242.
[5] XIN Rongfang, LI Zongren, ZHANG Kun, ZHANG Xing, HUANG Li, LIU Baoshan. Remote sensing monitoring of the dynamic changes in geologic hazards in the Huangshui River basin of Qinghai Province[J]. Remote Sensing for Natural Resources, 2022, 34(4): 254-261.
[6] LI Xingyou, ZHANG Fei, WANG Zheng. Present situation and development trend in building remote sensing monitoring models of soil salinization[J]. Remote Sensing for Natural Resources, 2022, 34(4): 11-21.
[7] MAO Kebiao, YAN Yibo, CAO Mengmeng, YUAN Zijin, QIN Zhihao. Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America[J]. Remote Sensing for Natural Resources, 2022, 34(4): 203-215.
[8] TONG Jing, YANG Jinzhong, DU Xin, DU Xiaomin, LI Chunbo, AN Na. Remote sensing-based monitoring of the treatment and redevelopment of the brownfields: A case study of brownfields in the risk control and rehabilitation list of Zhejiang Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 235-239.
[9] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[10] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[11] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[12] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[13] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[14] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[15] CHEN Zhen, XIA Xueqi, CHEN Jianping. A study of remote sensing evaluation model and main controlling factors of land ecological quality:A case study of Guang’an City[J]. Remote Sensing for Land & Resources, 2021, 33(1): 191-198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech