Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (6) : 138-147     DOI: 10.6046/zrzyyg.2024365
|
A remote sensing image matching network combining a large selective kernel-enhanced convolution module
DENG Yuxi(), LI Jiatian(), LIU Jiayin, LUO Xin, YANG Tao
Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
Download: PDF(8371 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Extracting information on various surface features from remote sensing images requires varying contextual data. To address this issue, this study proposed a new feature point matching method that integrated a large selective kernel-enhanced convolutional module. In this method, based on the ResNet34 network, a large selective kernel-enhanced convolutional module was embedded for dynamic feature extraction of different surface feature targets. Then, the initial dense matching was obtained using a sparse neighborhood consensus network. Meanwhile, geometric and motion consistency constraints were introduced to conduct the guided diffusion of matching points. Consequently, optimized matching results were achieved. This method yielded a PCK (α=0.05) accuracy of 0.89 on the Google Earth dataset, which increased by 7.22%, 5.95%, 2.30%, 4.71%, 7.22%, and 9.88%, respectively, compared to the SuperPoint, R2D2, NCNet, Sparse-NCNet, LoFTR, and Two-Stream networks. Additionally, it exhibited a high generalization ability on the Hpatches dataset. These results corroborate the effectiveness of the proposed method.

Keywords feature point matching      large selective kernel-enhanced convolutional structure      spatial reconstruction      geometric consistency      motion consistency     
ZTFLH:  TP751  
  TP79  
Issue Date: 31 December 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuxi DENG
Jiatian LI
Jiayin LIU
Xin LUO
Tao YANG
Cite this article:   
Yuxi DENG,Jiatian LI,Jiayin LIU, et al. A remote sensing image matching network combining a large selective kernel-enhanced convolution module[J]. Remote Sensing for Natural Resources, 2025, 37(6): 138-147.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024365     OR     https://www.gtzyyg.com/EN/Y2025/V37/I6/138
Fig.1  Remote sensing image feature point matching network combining enhanced large selective kernel convolution module
Fig.2  Large selective Kernel convolution structure
Fig.3  Spatial reconstruction unit
Fig.4  Enhanced large selective Kernel convolution module
方法 PCK值 MSE RMSE MAE CMR/%
α=0.1 α=0.05
SuperPoint 0.84 0.83 3.36 1.83 0.47 82.31
R2D2 0.85 0.84 33.91 5.82 0.60 80.44
NCNet 0.88 0.87 5.70 2.39 1.39 90.01
Sparse-NCNet 0.85 0.85 0.97 0.99 0.53 93.97
LoFTR 0.94 0.83 9.17 3.03 1.31 85.47
Two-Stream 0.90 0.81 0.92 0.96 0.52 94.12
本文方法 0.97 0.89 0.88 0.94 0.46 95.58
Tab.1  Google Earth datasets Precision comparison
Fig.5  The visualization results of the contrastive network on the Google Earth dataset
Fig.6  The visualization results of the network in this paper
方法 PCK值 MSE RMSE MAE CMR/%
α=0.1 α=0.05
SuperPoint 0.76 0.74 14.51 3.81 0.50 80.21
R2D2 0.82 0.81 26.03 5.10 0.50 78.92
NCNet 0.84 0.83 101.34 10.01 1.04 77.27
Sparse-NCNet 0.81 0.80 15.60 3.95 0.41 91.74
LoFTR 0.92 0.83 26.34 5.13 1.07 85.28
Two-Stream 0.88 0.81 1.88 1.37 0.87 91.44
本文方法 0.93 0.84 1.74 1.31 0.57 91.53
Tab.2  WHU-RS19 datasets Precision comparison
Fig.7  The visualization results of the contrastive network on the WHU-RS19 dataset
Fig.8  The visualization results of the network in this paper
方法 总体 照度 视角
准确率(%, <1/3/5 px)
SuperPoint 0.35/0.65/0.73 0.43/0.69/0.78 0.27/0.60/0.67
R2D2 0.33/0.73/0.81 0.37/0.76/0.85 0.29/0.70/0.77
NCNet 0.43/0.63/0.80 0.81/0.83/0.91 0.07/0.44/0.70
Sparse-NCNet 0.45/0.79/0.87 0.62/0.84/0.91 0.30/0.73/0.83
LoFTR 0.39/0.72/0.86 0.62/0.92/0.95 0.18/0.52/0.78
Two-Stream -/-/- -/-/- -/-/-
本文方法 0.44/0.82/0.91 0.61/0.92/0.98 0.26/0.71/0.84
Tab.3  Hpatches datasets MMA Precision comparison
LSKC SRU MSE RMSE MAE
× × 0.971 0.985 0.530
× 0.962 0.981 0.492
× 0.889 0.943 0.447
0.884 0.940 0.463
Tab.4  Results of ablation experiments of based enhanced large selective Kernel convolution module
[1] Girard N, Charpiat G, Tarabalka Y. Aligning and updating cadaster maps with aerial images by multi-task,multi-resolution deep learning[C]// Computer Vision - ACCV 2018. Cham: Springer International Publishing, 2019:675-690.
[2] 薛白, 王懿哲, 刘书含, 等. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1):61-66.doi:10.6046/zrzyyg.2021122.
[2] Xue B, Wang Y Z, Liu S H, et al. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1):61-66.doi:10.6046/zrzyyg.2021122.
[3] Seo S, Choi J S, Lee J, et al. UPSNet:Unsupervised pan-sharpening network with registration learning between panchromatic and multi-spectral images[J]. IEEE Access, 2020,8:201199-201217.
[4] Li X, Feng R, Guan X, et al. Remote sensing image mosaicking:Achievements and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(4):8-22.
[5] 李星华, 艾文浩, 冯蕊涛, 等. 遥感影像深度学习配准方法综述[J]. 遥感学报, 2023, 27(2):267-284.
[5] Li X H, Ai W H, Feng R T, et al. Survey of remote sensing image registration based on deep learning[J]. National Remote Sensing Bulletin, 2023, 27(2):267-284.
doi: 10.11834/jrs.20235012 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20235012/
[6] DeTone D, Malisiewicz T, Rabinovich A. SuperPoint:Self-supervised interest point detection and description[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).June 18-22,2018,Salt Lake City,UT,USA.IEEE,2018:337-33712.
[7] Laguna A B, Riba E, Ponsa D, et al. Key.Net:Keypoint detection by handcrafted and learned CNN filters[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).October 27-November 2,2019.Seoul,Korea.IEEE,2019:5835-5843.
[8] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. 2014:1409.1556.https://arxiv.org/abs/1409.1556v6.
url: https://arxiv.org/abs/1409.1556v6
[9] Yang Z, Dan T, Yang Y. Multi-temporal remote sensing image registration using deep convolutional features[J]. IEEE Access, 2018,6:38544-38555.
[10] Revaud J, De Souza C, Humenberger M, et al. R2d2:Reliable and repeatable detector and descriptor[J]. Advances in neural information processing systems, 2019,32.
[11] Rocco I, Cimpoi M, Arandjelović R, et al. Neighbourhood consensus networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems.December 3 - 8,2018,Montréal,Canada.ACM, 2018:1658-1669.
[12] Li X, Han K, Li S, et al. Dual-resolution correspondence networks[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems.December 6 - 12,2020,Vancouver,BC,Canada.ACM, 2020:17346-17357.
[13] Rocco I, Arandjelović R, Sivic J, et al. Efficient neighbourhood consensus networks via submanifold sparse convolutions[C]// Computer Vision - ECCV 2020. ACM, 2020:605-621.
[14] 陈颖, 张祺, 李文举, 等. 参数合成空间变换网络的遥感图像一致性配准[J]. 中国图象图形学报, 2021, 26(12):2964-2980.
[14] Chen Y, Zhang Q, Li W J, et al. Consistent registration of remote sensing images in parametric synthesized spatial transformation network[J]. Journal of Image and Graphics, 2021, 26(12):2964-2980.
doi: 10.11834/jig.200587 url: http://www.cjig.cn/zh/article/doi/10.11834/jig.200587/
[15] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017,30.
[16] Sun J, Shen Z, Wang Y, et al. LoFTR:Detector-free local feature matching with transformers[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 20-25,2021,Nashville,TN,USA.IEEE, 2021:8918-8927.
[17] Guo M H, Lu C Z, Liu Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4):733-752.
doi: 10.1007/s41095-023-0364-2 url: https://ieeexplore.ieee.org/document/10897730/
[18] Lau K W, Po L M, Rehman Y A U. Large separable kernel attention:Rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024,236:121352.
[19] Li X, Wang W, Hu X, et al. Selective kernel networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 15-20,2019. Long Beach,CA,USA.IEEE, 2019:510-519.
[20] Li J, Wen Y, He L. SCConv:Spatial and channel reconstruction convolution for feature redundancy[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 17-24,2023,Vancouver,BC,Canada.IEEE,2023:6153-6162.
[21] Park J H, Nam W J, Lee S W. A two-stream symmetric network with bidirectional ensemble for aerial image matching[J]. Remote Sensing, 2020, 12(3):465.
doi: 10.3390/rs12030465 url: https://www.mdpi.com/2072-4292/12/3/465
[22] Dai D, Yang W. Satellite image classification via two-layer sparse coding with biased image representation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1):173-176.
doi: 10.1109/LGRS.2010.2055033 url: http://ieeexplore.ieee.org/document/5545358/
[23] Balntas V, Lenc K, Vedaldi A, et al. HPatches:A benchmark and evaluation of handcrafted and learned local descriptors[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).July 21-26,2017,Honolulu,HI,USA.IEEE,2017:3852-3861.
[1] ZHANG Jie, WANG Hengyou, HUO Lianzhi. Pansharpening of hyperspectral remote sensing images based on feature enhancement and Three-Stream Transformer[J]. Remote Sensing for Natural Resources, 2025, 37(6): 97-106.
[2] ZHU Rui, LI Yikun, LI Xiaojun, YANG Shuwen, XIE Jiangling. Multivariate alteration detection using angle thresholds based on a context-sensitive Bayesian network[J]. Remote Sensing for Natural Resources, 2025, 37(5): 131-140.
[3] WEI Lin, RAN Haoxiang, YIN Yuping. A classification network of hyperspectral images with multi-scale feature fusion[J]. Remote Sensing for Natural Resources, 2025, 37(3): 113-122.
[4] HE Xiaojun, LUO Jie. Semantic segmentation of high-resolution remote sensing images based on context- and class-aware feature fusion[J]. Remote Sensing for Natural Resources, 2025, 37(2): 1-10.
[5] MA Min, ZUO Zhen, HAN Yandong, QIU Ye, QIAO Mudong. Origin of surface substrate for soil salinization and alkalization in the Songnen Plain[J]. Remote Sensing for Natural Resources, 2025, 37(2): 128-139.
[6] WEI Hongyu, YAO Wenju, SUN Jian, SUN Song, ZHANG Huanxue. Hierarchical fine-scale information extraction of bare land based on hue-saturation-value and texture features[J]. Remote Sensing for Natural Resources, 2025, 37(2): 56-65.
[7] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[8] PAN Junjie, SHEN Li, YAN Xin, NIE Xin, DONG Kuanlin. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4): 149-157.
[9] GUO Yong, ZHANG Linxiang, XU Zeyu, CAI Zhongxiang. Remote sensing-based detection of dams in the Daqing River basin through optimization using hard negative samples of bridges[J]. Remote Sensing for Natural Resources, 2024, 36(4): 201-209.
[10] GUO Penghao, QIU Jianlin, ZHAO Shunan. A pansharpening algorithm for remote sensing images based on high-frequency domain and multi-depth dilated network[J]. Remote Sensing for Natural Resources, 2024, 36(3): 146-153.
[11] TAI Jiayi, SHEN Li, QIAO Wenfan, ZHOU Wuzhen. Impacts of different proportions of contextual information on the construction of sample sets of remote sensing scene images for damaged buildings[J]. Remote Sensing for Natural Resources, 2024, 36(3): 154-162.
[12] ZHANG Chungui, PENG Jida. Air freshness monitoring technology based on meteorology and remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3): 163-173.
[13] LUO Wei, LI Xiuhua, QIN Huojuan, ZHANG Muqing, WANG Zeping, JIANG Zhuhui. Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(3): 248-258.
[14] HE Haixia, LI Bo. Characteristics and risk analysis of the flash flood occurring in Datong of Qinghai Province on August 18, 2022[J]. Remote Sensing for Natural Resources, 2024, 36(2): 135-141.
[15] LIU Yongxin, ZHANG Siyuan, BIAN Peng, WANG Pijun, YUAN Shuai. Exploring the spatio-temporal evolution of land cover types in the Bayannur section of the Yellow River basin from 1989 to 2020[J]. Remote Sensing for Natural Resources, 2024, 36(2): 207-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech