Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 207-217     DOI: 10.6046/zrzyyg.2023049
|
Exploring the spatio-temporal evolution of land cover types in the Bayannur section of the Yellow River basin from 1989 to 2020
LIU Yongxin(), ZHANG Siyuan(), BIAN Peng, WANG Pijun, YUAN Shuai
Hohhot General Survey of Natural Resources Center, China Geological Survey, Hohhot 010010, China
Download: PDF(14388 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Changes in land cover types play a significant role in investigating the changes in regional ecological environments. This study aims to accurately determine the changes in land cover types in the Bayannur section of the Yellow River basin from 1989 to 2020. Based on Landsat data images, and combining visual interpretation with supervised random forest classification, this study interpreted and classified the land cover types of banners/counties within the Bayannur section at an average interval of 10 years from 1989 to 2020. The accuracy verification reveals an overall classification accuracy of above 85% and a Kappa coefficient of above 0.80. As demonstrated by the transfer change matrix of land cover types, the Bayannur section during the study period saw a decrease of 22.17% in sandy land, a reduction of 26.18% in grassland, an increase of 20.83% in cultivated land, and subtle variations in water surfaces. Different areas exhibited distinct changes in land cover types. Desert steppe areas were characterized by mutual transformation between sandy land and grassland. Cultivated and sandy land areas primarily exhibited a shift from sandy land to cultivated land, significantly represented by Dengkou County, where the sandy land decreased by 32.17% and the cultivated land increased by 57.48% in 2020 compared to 1989. Changes in land cover types of desert steppe areas were driven by both social and natural factors, whereas those of cultivated and sandy land areas were predominantly subjected to social factors. The results of this study will provide effective data reference and support for more rational planning and utilization of land space.

Keywords land cover type      supervised classification      random forest     
ZTFLH:  TP79  
  TP751.1  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yongxin LIU
Siyuan ZHANG
Peng BIAN
Pijun WANG
Shuai YUAN
Cite this article:   
Yongxin LIU,Siyuan ZHANG,Peng BIAN, et al. Exploring the spatio-temporal evolution of land cover types in the Bayannur section of the Yellow River basin from 1989 to 2020[J]. Remote Sensing for Natural Resources, 2024, 36(2): 207-217.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023049     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/207
Fig.1  Location of study area
Fig.2  Technology flowchart for the surface coverage types classification
地表覆盖类型 分布特征 分类方法 分类代码
裸岩石砾地 主要分布在研究区中部阴山-狼山一带,连片出露面积较大,根据岩性不同,影像特征变化较大,与其他地类可区分度较低 目视解译 0
沙地 大面积沙地主要分布在研究区西部的博克特沙漠及其周边,以及乌梁素海东侧山间平原地带,小面积分布在河套灌区内及乌拉特草原 监督分类 1
草地 主要分布在乌梁素海东部山间平原和北部的乌拉特草原,研究区主要为草原类型荒漠草原,植被生长状况受降水影响较大 监督分类 2
耕地 耕地主要分布在研究区南部河套平原,主要以黄河水灌溉的水浇地为主,分布面积较大 监督分类 3
静水水面 静水水面主要为研究区内一些小面积湖泊,一般不具流动性,且水生植物生长较少,在假彩色影像上通常呈暗绿色或黑色 监督分类 4
流动水面 流动水面主要指黄河河道内水域,由于黄河高流动性和高含沙量,在假彩色影像上通常呈土黄色 监督分类
含水生植物水面 主要为乌梁素海水域,由于乌梁素海水域水体流动性较差,水域内水生植物生长茂密,在影响特征上与耕地相类似,为提高解译精度,本次研究将乌梁素海水域范围单独进行目视解译 目视解译
Tab.1  Classification information of surface coverage type in study area
Fig.3  Precision of surface coverage type interpretation in 2020
分类区域 1989年 2000年 2010年 2020年
总体分类
精度/%
Kappa
系数
总体分类
精度/%
Kappa
系数
总体分类
精度/%
Kappa
系数
总体分类
精度/%
Kappa
系数
乌拉特前旗 88.41 0.83 91.61 0.87 95.33 0.93 87.49 0.82
乌拉特中旗 95.13 0.91 96.03 0.94 96.26 0.92 88.52 0.82
乌拉特后旗 82.23 0.81 83.33 0.84 85.65 0.82 87.45 0.86
五原县 97.80 0.96 95.40 0.92 97.89 0.96 96.80 0.93
临河区 96.32 0.94 95.65 0.91 93.86 0.93 93.43 0.90
杭锦后旗 89.98 0.89 90.23 0.96 91.60 0.95 90.02 0.89
磴口县 93.36 0.92 94.28 0.93 94.46 0.91 95.28 0.93
Tab.2  Evaluation results of image supervised classification accuracy in Bayannur area of Yellow River Basin from 1989 to 2020
Fig.4  Distribution range of bare rock gravel in Bayannaoer section of Yellow River Basin
Fig.5  Distribution of surface coverage types in Bayannaoer section of Yellow River Basin from 1989 to 2020
Fig.6  Changes of land cover types in Bayannaoer section of the Yellow River Basin from 1989 to 2020
Fig.7  Changes of land cover types in Urad Front Banner from 1989 to 2000
Fig.8  Changes of surface coverage types in Urat Middle Banner and Urat Rear Banner from 1989 to 2020
Fig.9  Changes of land cover types in Wuyuan County, Linhe District and Hangjinhou Banner from 1989 to 2020
Fig.10  Changes of land cover types in Dengkou County from 1989 to 2020
主成分 特征值 贡献率/% 累计贡献率/%
1 2.467 41.109 41.109
2 1.552 25.859 66.968
3 1.203 20.055 87.023
4 0.416 6.936 93.959
5 0.300 5.002 98.961
6 0.062 1.039 100.000
Tab.3  Eigevvalues,contribution rate and cumulative contribution rate in PCA
影响因子 第一主成分 第二主成分 第三主成分
粮食总产量 0.942 0.196 0.115
国民生产总值 0.841 0.354 0.327
年均气温 0.766 -0.171 -0.362
昼夜温差 0.007 0.923 -0.114
降雨量 0.229 -0.505 0.772
人口 0.482 -0.502 -0.586
Tab.4  Principal component analysis of driving factors
[1] 刘永新, 姜琦刚, 刘伟, 等. 利用GRSFAI预测内蒙古北部干旱地区浅层地下水分布[J]. 世界地质, 2019, 38(4):1142-1151.
[1] Liu Y X, Jiang Q G, Liu W, et al. Prediction of shallow groundwater distribution in arid region of northern Inner Mongolia using GRSFAI[J]. Global Geology, 2019, 38(4):1142-1151.
[2] Pedruzzi R, Andreão W L, Baek B H, et al. Update of land use/land cover and soil texture for Brazil:Impact on WRF modeling results over São Paulo[J]. Atmospheric Environment, 2022, 268:118760.
[3] Cho M S, Qi J. Quantifying spatiotemporal impacts of hydro-dams on land use/land cover changes in the Lower Mekong River Basin[J]. Applied Geography, 2021, 136:102588.
[4] Rodriguez-Caballero E, Reyes A, Kratz A, et al. Effects of climate change and land use intensification on regional biological soil crust cover and composition in southern Africa[J]. Geoderma, 2022, 406:115508.
[5] 高宇婷, 于洋, 孙凌霄, 等. 塔里木盆地南缘绿洲土地覆盖变化及驱动力[J]. 干旱区研究, 2021, 38(4):1172-1183.
[5] Gao Y T, Yu Y, Sun L X, et al. Land coverage change and driving forces of an oasis in the southern margin of Tarim Basin[J]. Arid Zone Research, 2021, 38(4):1172-1183.
[6] 贾丹阳, 熊祯祯, 高岩, 等. 近30 a台特玛湖地区土地利用/土地覆被变化及其影响因素[J]. 干旱区地理, 2021, 44(4):1022-1031.
[6] Jia D Y, Xiong Z Z, Gao Y, et al. Land use/Land cover change and influencing factors in the TaiTema Lake in the past 30 years[J]. Arid Land Geography, 2021, 44(4):1022-1031.
[7] 李石华, 周峻松, 王金亮. 1974—2014年抚仙湖流域土地利用/覆盖时空变化与驱动力分析[J]. 国土资源遥感, 2017, 29(4):132-139.doi:10.6046/gtzyyg.2017.04.20.
[7] Li S H, Zhou J S, Wang J L. Spatio-temporal LUCC and driving force in Fuxian Lake watershed from 1974 to 2014[J]. Remote Sensing for Land Resources, 2017, 29(4):132-139.doi:10.6046/gtzyyg.2017.04.20.
[8] 黄鹏程, 张明明, 王新宇, 等. 基于Landsat8 OLI的西安市土地利用类型遥感分类研究[J]. 测绘与空间地理信息, 2020, 43(1):85-88,92.
[8] Huang P C, Zhang M M, Wang X Y, et al. Remote sensing classification of land use in Xi’an based on Landsat8 OLI[J]. Geomatics & Spatial Information Technology, 2020, 43(1):85-88,92.
[9] 宋奇, 冯春晖, 高琪, 等. 阿拉尔垦区近30年耕地变化及其驱动因子分析[J]. 国土资源遥感, 2021, 33(2):202-212.doi:10.6046/gtzyyg.2020183.
[9] Song Q, Feng C H, Gao Q, et al. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land Resources, 2021, 33(2):202-212.doi: 10.6046/gtzyyg.2020183.
[10] 王敏, 高新华, 陈思宇, 等. 基于Landsat8遥感影像的土地利用分类研究——以四川省红原县安曲示范区为例[J]. 草业科学, 2015, 32(5):694-701.
[10] Wang M, Gao X H, Chen S Y, et al. The land use classification based on Landsat8 remote sensing image:A case study of Anqu demonstration community in Hongyuan County of Sichuan Province[J]. Pratacultural Science, 2015, 32(5):694-701.
[11] 袁盼丽, 汪传建, 赵庆展, 等. 基于深度学习的寒旱区多时序影像土地利用及变化监测——以新疆莫索湾垦区为例[J]. 干旱区地理, 2021, 44(6):1717-1728.
[11] Yuan P L, Wang C J, Zhao Q Z, et al. Dynamic monitoring of land-use/land-cover change in cold and arid region based on deep learning: A case study of Mosuowan reclamation area in Xinjiang[J]. Arid Land Geography, 2021, 44(6):1717-1728.
[12] 张金良, 王炜, 付健, 等. 黄河流域内流区土地利用与植被覆盖时空演变规律[J]. 人民黄河, 2022, 44(11):1-5,19.
[12] Zhang J L, Wang W, Fu J, et al. Spatial-temporal dynamic characteristics of land use and vegetation cover in inland flow area of Yellow River Basin[J]. Yellow River, 2022, 44(11):1-5,19.
[13] 张静, 杜加强, 盛芝露, 等. 1982—2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 2021, 30(5):929-937.
doi: 10.16258/j.cnki.1674-5906.2021.05.005
[13] Zhang J, Du J Q, Sheng Z L, et al. Spatio-temporal changes of vegetation cover and their influencing factors in the Yellow River Basin from 1982 to 2015[J]. Ecology and Environmental Sciences, 2021, 30(5):929-937.
[14] 孙永军, 周强, 杨日红. 黄河流域土地荒漠化动态变化遥感研究[J]. 国土资源遥感, 2008, 20(2):74-78,121.doi:10.6046/gtzyyg.2008.02.17.
[14] Sun Y J, Zhou Q, Yang R H. A study of land desertification dynamic change in Yellow River Basin[J]. Remote Sensing for Land Resources, 2008, 20(2):74-78,121.doi:10.6046/gtzyyg.2008.02.17.
[15] 刘希朝, 李效顺, 蒋冬梅. 基于土地利用变化的黄河流域景观格局及生态风险评估[J]. 农业工程学报, 2021, 37(4):265-274.
[15] Liu X Z, Li X S, Jiang D M. Landscape pattern identification and ecological risk assessment using land-use change in the Yellow River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4):265-274.
[16] 肖东洋, 牛海鹏, 闫弘轩, 等. 1990—2018年黄河流域(河南段)土地利用格局时空演变[J]. 农业工程学报, 2020, 36(15):271-281,326.
[16] Xiao D Y, Niu H P, Yan H X, et al. Spatiotemperal evolution of land use pattern in the Yellow River Basin(Henan section) from 1990 to 2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15):271-281,326.
[17] 卫新东, 张健, 王筛妮, 等. 黄河流域2000—2020年生态用地格局变化与分异趋势[J]. 生态学杂志, 2021, 40(11):3424-3435.
[17] Wei X D, Zhang J, Wang S N, et al. The evolution and differentiation trend of ecological land pattern in the Yellow River Basin from 2000 to 2020[J]. Chinese Journal of Ecology, 2021, 40(11):3424-3435.
doi: DOI: 10.13292/j.1000-4890.202111.019
[18] 张银辉, 罗毅, 刘纪远, 等. 内蒙古河套灌区土地利用与景观格局变化研究[J]. 农业工程学报, 2005, 21(1):61-65.
[18] Zhang Y H, Luo Y, Liu J Y, et al. Land use and landscape pattern change in Hetao Irrigation District,Inner Mongolia Autonomous Region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(1):61-65.
[19] 贾鹏. 基于遥感的磴口县土地利用/覆盖变化研究[D]. 兰州: 兰州大学, 2016.
[19] Jia P. A study of LUCC in Dengkou based on remote sensing[D]. Lanzhou: Lanzhou University, 2016.
[20] Yu Z, Di L, Yang R, et al. Selection of Landsat8 OLI band combinations for land use and land cover classification[C]// 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) Istanbul,Turkey,IEEE, 2019:1-5.
[21] 李明洁, 王明常, 王凤艳, 等. 基于多特征随机森林算法的深圳市土地利用分类[J]. 世界地质, 2022, 41(3):632-640.
[21] Li M J, Wang M C, Wang F Y, et al. Land use classification in Shenzhen based on multi-features random forest algorithm[J]. World Geology, 2022, 41(3):632-640.
[22] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
[23] 王德军, 姜琦刚, 李远华, 等. 基于Sentinel -2A/B 时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4):236-243.doi:10.6046/gtzyyg.2020.04.29.
[23] Wang D J, Jiang Q G, Li Y H, et al. Land use classification of farming areas based on time series Sentinel -2A/B data and random forest algorithm[J]. Remote Sensing for Land and Resources, 2020, 32(4):236-243.doi:10.6046/gtzyyg.2020.04.29.
[24] 高文龙, 苏腾飞, 张圣微, 等. 矿区地物分类及土地利用/覆盖变化动态监测——以海流兔流域为例[J]. 国土资源遥感, 2020, 32(3):232-239.doi:10.6046/gtzyyg.2020.03.30.
[24] Gao W L, Su T F, Zhang S W, et al. Classification of objects and LUCC dynamic monitoring in mining area:A case study of Hailiutu watershed[J]. Remote Sensing for Land Resources, 2020, 32(3):232-239.doi:10.6046/gtzyyg.2020.03.30.
[25] 谷彦斐, 徐泮林, 高明超. 1987—2017年南京市土地利用/覆被变化及驱动力分析[J]. 测绘与空间地理信息, 2021, 44(7):131-133,143.
[25] Gu Y F, Xu P L, Gao M C. Analysis of land use and land cover change and driving forces in Nanjing from 1987 to 2017[J]. Geomatics & Spatial Information Technology, 2021, 44(7):131-133,143.
[26] 李航. 统计学习方法[M]. 2版. 北京: 清华大学出版社, 2019:297-298.
[26] Li H. Statistical learning method[M]. 2nd ed. Beijing: Tsinghua University Press, 2019:297-298.
[27] 张洪敏, 张艳芳, 田茂, 等. 基于主成分分析的生态变化遥感监测——以宝鸡市城区为例[J]. 国土资源遥感, 2018, 30(1):203-209.doi:10.6046/gtzyyg.2018.01.28.
[27] Zhang H M, Zhang Y F, Tian M, et al. Dynamic monitoring of eco-environment quality changes based on PCA:A case study of urban area of Baoji City[J]. Remote Sensing for Land Resources, 2018, 30(1):203-209.doi:10.6046/gtzyyg.2018.01.28.
[1] FENG Qian, ZHANG Jiahua, DENG Fan, WU Zhenjiang, ZHAO Enling, ZHENG Peixin, HAN Yang. A mapping methodology for wetland categories of the Yellow River Delta based on optimal feature selection and spatio-temporal fusion algorithm[J]. Remote Sensing for Natural Resources, 2024, 36(2): 39-49.
[2] LIU Meiyan, NIE Sheng, WANG Cheng, XI Xiaohuan, CHENG Feng, FENG Baokun. Forest stock volume inversion based on ICESat-2 and Sentinel-2A data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 210-216.
[3] LU Xianjian, ZHANG Huanling, YAN Hongbo, LI Zhenbao, GUO Ziyang. A method for sugarcane information extraction based on multi-feature optimal selection of Sentinel-1/2 image data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 86-94.
[4] DU Xiaochuan, LOU Debo, XU Lingang, FAN Yinglin, ZHANG Lin, LI Wanyue. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 53-60.
[5] YU Shaohuai, XU Qiao, YU Fei. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
[6] ZHONG Xiaoyong, LI Hongyi, GUO Dongyan, XIE Modian, ZHAO Wanru, HU Bifeng. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model[J]. Remote Sensing for Natural Resources, 2023, 35(4): 178-185.
[7] HE Suling, HE Zenghong, PAN Jiya, WANG Jinliang. County-scale land use/land cover simulation based on multiple models[J]. Remote Sensing for Natural Resources, 2023, 35(4): 201-213.
[8] CHEN Jian, LI Hu, LIU Yufeng, CHANG Zhu, HAN Weijie, LIU Saisai. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4): 292-300.
[9] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[10] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[11] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[12] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[13] YAN Han, ZHANG Yi. County-level natural resource survey in western China based on both GF-6 images and the third national land resource survey results[J]. Remote Sensing for Natural Resources, 2023, 35(2): 277-286.
[14] WU Yuxin, WANG Juanle, HAN Baomin, YAN Xinrong. Forest classification for Motuo County: A method based on spatio-temporal-spectral characteristics[J]. Remote Sensing for Natural Resources, 2023, 35(1): 180-188.
[15] ZHANG Hao, GAO Xiaohong, SHI Feifei, LI Runxiang. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4): 144-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech