Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 135-141     DOI: 10.6046/zrzyyg.2023002
|
Characteristics and risk analysis of the flash flood occurring in Datong of Qinghai Province on August 18, 2022
HE Haixia1(), LI Bo2()
1. National Disaster Reduction Center of China, Ministry of Emergency Management of the People’s Republic of China, Beijing 100024, China
2. National Institute of Natural Hazards, Ministry of Emergency Management of the People’s Republic of China, Beijing 100085, China
Download: PDF(27721 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In the early morning of August 18, 2022, a flash flood occurred in Datong Hui and Tu Autonomous County, Xining City, Qinghai Province, resulting in 26 deaths and 5 missing. This flash flood is a typical event of multiple casualties caused by a creek disaster. The superimposed effect of rainfall directly led to this flash flood. The early continuous rainfall caused soil moisture content to reach or approach saturation. On the night of August 17, 2022, local short-time heavy rainfall smashing historical records, which could not infiltrate into the soil or be retained by vegetation, resulted in a flash flood. As revealed by the comprehensive analysis of remote sensing data, digital elevation model, field data, and media data, the flash flood area exhibited a large catchment area, a narrow river valley, a high relative height difference, a shallow river channel, and many obstacles. Consequently, the flash flood manifested high potential energy, a long movement distance, and locally severe backwater overflow, destroying some houses, farmland, and roads on both sides of the river channel. Against the backdrop of global changes, low-risk areas of flash floods, including the arid region of northwest China and the Qinghai-Tibet Plateau, display significantly increased precipitation and frequent local short-time heavy rainfall. Hence, creeks in these low-risk areas are exposed to increasing risks of flash floods and even catastrophic ones. Additionally, heavy rainfall might induce the recurrence of flash floods in disaster areas.

Keywords flash flood      origin and characteristics      remote sensing monitoring      risk analysis     
ZTFLH:  TP751  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haixia HE
Bo LI
Cite this article:   
Haixia HE,Bo LI. Characteristics and risk analysis of the flash flood occurring in Datong of Qinghai Province on August 18, 2022[J]. Remote Sensing for Natural Resources, 2024, 36(2): 135-141.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023002     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/135
Fig.1  Location map of study area
卫星 资源一号02D卫星 高分二号卫星
载荷 可见近红
外相机
高光谱相机 全色和多
光谱相机
光谱范围/μm 0.452~0.902
(全色)
0.452~0.521
0.522~0.607
0.635~0.694
0.776~0.895
0.416~0.452
0.591~0.633
0.708~0.752
0.871~1.047
0.452~0.902
166个波段
0.45~0.901
(全色)
0.45~0.524
0.52~0.594
0.63~0.694
0.77~0.894
空间分辨率/m 全色 2.5
多光谱 10
30 全色 1
多光谱 4
幅宽/km 115 60 45
Tab.1  Parameters of ZY1-02D and GF2 satellites
Fig.2  DEM of disaster area
Fig.3  Post-disaster aerial map around Hejiazhuang
Fig.4  Remote sensing interpretation characteristics of flash flood extent
Fig.5  Map of flash flood extent
Fig.6  Comparison imagines before and after the house damage
[1] 崔鹏, 邹强. 山洪泥石流风险评估与风险管理理论与方法[J]. 地理科学进展, 2016, 35(2):137-147.
doi: 10.18306/dlkxjz.2016.02.001
[1] Cui P, Zou Q. Theory and method of risk assessment and risk management of debris flows and flash floods[J]. Progress in Geography, 2016, 35(2):137-147.
doi: 10.18306/dlkxjz.2016.02.001
[2] 张志彤. 我国山洪灾害特点及其防治思路[J]. 中国水利, 2007(14):14-15.
[2] Zhang Z T. Characters of mountain flood disasters in China and prevention methods[J]. China Water Resources, 2007(14):14-15.
[3] 郭良, 丁留谦, 孙东亚, 等. 中国山洪灾害防御关键技术[J]. 水利学报, 2018, 49(9):1123-1136.
[3] Guo L, Ding L Q, Sun D Y, et al. Key techniques of flash flood disaster prevention in China[J]. Journal of Hydraulic Engineering, 2018, 49(9):1123-1136.
[4] 胡焕庸. 中国人口之分布—附统计表与密度图[J]. 地理学报, 1935(2):33-74.
doi: 10.11821/xb193502002
[4] Hu H Y. Distribution of population in China - statistical table and density map[J]. Acta Geographica Sinica, 1935(2):33-74.
[5] 刘业森, 杨振山, 黄耀欢, 等. 建国以来中国山洪灾害时空演变格局及驱动因素分析[J]. 中国科学:地球科学, 2019, 49(2):408-420.
[5] Liu Y S, Yang Z S, Huang Y H, et al. Spatiotemporal evolution and driving factors of China’s flash flood disasters since 1949[J]. Scientia Sinica(Terrae), 2019, 49(2):408-420.
[6] 王澄海, 张晟宁, 张飞民, 等. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9):980-989.
doi: 10.11867/j.issn.1001-8166.2021.087
[6] Wang C H, Zhang S N, Zhang F M, et al. On the Increase of precipitation in the northwestern China under the global warming[J]. Advances in Earth Science, 2021, 36(9):980-989.
doi: 10.11867/j.issn.1001-8166.2021.087
[7] 国务院. 国务院关于印发舟曲灾后恢复重建总体规划的通知[EB/OL].(2010-11-10)[ 2023-05-18]. http://www.gov.cn/zhengce/content/2010-11/10/content_6563.htm.
url: http://www.gov.cn/zhengce/content/2010-11/10/content_6563.htm
[8] 辛荣芳, 李宗仁, 张焜, 等. 青海省湟水流域地质灾害动态变化遥感监测[J]. 自然资源遥感, 2022, 34(4):254-261.doi:10.6046/zrzyyg.2021313.
[8] Xin R F, Li Z R, Zhang K, et al. Remote sensing monitoring of the dynamic changes in geologic hazards in the Huangshui River basin of Qinghai Province[J]. Remote Sensing for Natural Resources, 2022, 34(4):254-261.doi:10.6046/zrzyyg.2021313.
[9] 大通土族回族自治县人民政府. 魅力大通.[EB/OL].[2023-05-18]. http://www.datong.gov.cn/.
url: http://www.datong.gov.cn/
[9] People’s Government of Datong Tu and Hui Autonomous County. Charming Datong[EB/OL].[2023-05-18]. http://www.datong.gov.cn/.
url: http://www.datong.gov.cn/
[10] 张志军, 庄永成. 基于GF-1数据的地质灾害遥感调查—以青海大通县为例[J]. 科学技术与工程, 2017, 17(18):9-17.
[10] Zhang Z J, Zhuang Y C. The survey of geological hazards based on GF-1 data: Taking example for Datong County,Qinghai Province[J]. Science Technology and Engineering, 2017, 17(18):9-17.
[11] 潘腾. 高分二号卫星的技术特点[J]. 中国航天, 2015(1):3-9.
[11] PAN T. Technical characteristic of Gaofen-2 satellite[J]. Aerospace China, 2015(1):3-9.
[12] 张宏宇, 韩波, 王啸虎, 等. 资源一号02D卫星总体设计与技术特点[J]. 航天器工程, 2020, 29(6):10-18.
[12] Zhang H Y, Han B, Wang X H, et al. System design and technique characteristic of ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6):10-18.
[13] 魏红艳, 肖晨超, 宋庆君, 等. 资源一号02D卫星在轨测试自然资源典型应用[J]. 航天器工程, 2020, 29(6):148-154.
[13] Wei H Y, Xiao C C, Song Q J, et al. Natural resources typical applications in on-orbit test of ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6):148-154.
[14] 申茜, 姚月, 李利伟, 等. 北京市平原区2015年—2019年0.8 m地表反射率数据集[J]. 遥感学报, 2021, 25(11):2303-2312.
[14] Shen Q, Yao Y, Li L, et al. Annual 0.8 m surface reflectance data set of Beijing plain area from 2015 to 2019[J]. National Remote Sensing Bulletin, 2021, 25(11):2303-2312.
[15] 薛玉斌, 王浡, 马洪婷. 青海大通县公布“8·18”山洪灾害成因.[EB/OL].(2022-08-19)[2023-05-18]. http://www.xinhuanet.com/2022-08/19/c_1128928016.htm.
url: http://www.xinhuanet.com/2022-08/19/c_1128928016.htm
[15] Xue Y B, Wang B, Ma H T. Datong County, Qinghai Province announces the causes of the "8.18" flash flood disaster.[EB/OL].(2022-08-19)[2023-05-18]. http://www.xinhuanet.com/2022-08/19/c_1128928016.htm.
url: http://www.xinhuanet.com/2022-08/19/c_1128928016.htm
[16] 贾君. 青海东部黄土分布区山洪灾害成因、特点及防治措施[J]. 青海科技, 2011, 18(5):55-57.
[16] Jia J. Flash flood causes,characteristics and prevention measures of loess area in eastern Qinghai[J]. Qinghai Science and Technology, 2011, 18(5):55- 57.
[17] 范一大, 和海霞, 李博, 等. 基于HJ-1 CCD数据的洪涝灾害范围动态监测研究——以黑龙江省抚远县为例[J]. 遥感技术与应用, 2016, 31(1):102-108.
[17] Fan Y D, He H X, L B, et al. Research on flood disaster extent dynamics monitoring using HJ-1CCD:A case study in Fuyuan of Heilongjiang Province,Northestern China[J]. Remote sensing technology and application, 2016, 31(1):102-108.
[18] 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2):152-164.
[18] Shi Y F, Shen Y P, Li D L, et al. Discussion on the present climate change from warm-dry to warm-wet in northwest China[J]. Quaternary Sciences, 2003, 23(2):152-164.
[19] 何秉顺, 马美红, 李青, 等. 我国山洪灾害防治现状与特点探析[J]. 中国农村水利水电, 2021(5):133-138,144.
[19] He B S, Ma M H, LI Q, et al. Current situation and characteristics of flash flood prevention in China[J]. China Rural Water and Hydropower, 2021(5):133-138,144.
[1] XING Yu, WANG Jingya, YANG Jinzhong, CHEN Dong, DU Xiaomin, GUO Jingkai, SONG Licong. Distributions and existing problems of mining land of abandoned open-pit mines in China[J]. Remote Sensing for Natural Resources, 2024, 36(2): 21-26.
[2] MA Xiaoxue, JIAO Runcheng, CAO Ying, NAN Yun, WANG Shengyu, GUO Xuefei, ZHAO Danning, YAN Chi, NI Xuan. Application of integrated remote sensing monitoring technology for geological hazards in major engineering construction:A case study of the Yanqing competition area of the Beijing 2022 Olympic Winter Games[J]. Remote Sensing for Natural Resources, 2024, 36(2): 248-256.
[3] ZHOU Xiaojia. Application of remote sensing monitoring in abandoned arable land in a hilly region[J]. Remote Sensing for Natural Resources, 2024, 36(1): 235-241.
[4] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[5] LI Xingyou, ZHANG Fei, WANG Zheng. Present situation and development trend in building remote sensing monitoring models of soil salinization[J]. Remote Sensing for Natural Resources, 2022, 34(4): 11-21.
[6] WANG Juan, WANG Zhihong, ZHANG Jianguo, CHU Na, LI Si, YIN Zhan. Remote sensing monitoring and impact intensity assessment of human activities in Henan national nature reserves[J]. Remote Sensing for Natural Resources, 2022, 34(4): 235-242.
[7] XIN Rongfang, LI Zongren, ZHANG Kun, ZHANG Xing, HUANG Li, LIU Baoshan. Remote sensing monitoring of the dynamic changes in geologic hazards in the Huangshui River basin of Qinghai Province[J]. Remote Sensing for Natural Resources, 2022, 34(4): 254-261.
[8] TONG Jing, YANG Jinzhong, DU Xin, DU Xiaomin, LI Chunbo, AN Na. Remote sensing-based monitoring of the treatment and redevelopment of the brownfields: A case study of brownfields in the risk control and rehabilitation list of Zhejiang Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 235-239.
[9] ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
[10] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[11] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
[12] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[13] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[14] Xi LIU, Lina HAO, Xianhua YANG, Jie HUANG, Zhi ZHANG, Wunian YANG. Research and implementation of rapid statistical methods for mine remote sensing monitoring indicators[J]. Remote Sensing for Land & Resources, 2020, 32(2): 259-265.
[15] Jie WANG, Yaqiu YIN, Hang YU, Cunhao JIANG, Yu WAN. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 232-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech