Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (3) : 163-173     DOI: 10.6046/zrzyyg.2024074
|
Air freshness monitoring technology based on meteorology and remote sensing
ZHANG Chungui1,2(), PENG Jida1,2
1. Fujian Institute of Meteorological Science, Fuzhou 350008, China
2. Fujian Key Laboratory of Severe Weather, Fuzhou 350008, China
Download: PDF(3992 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The concentrations of negative oxygen ions and particulate matter 2.5 (PM2.5) serve as important indicators in the assessment of the degrees of air freshness and cleanliness. Based on 2018-2022 data from 50 negative oxygen ion observation stations affiliated with the Fujian meteorological departments, along with the ecological parameters such as aerosol, vegetation index, and surface brightness temperature obtained by satellite-based remote sensing inversion, this study built estimation models for the concentrations of negative oxygen ions and PM2.5 using the Cubist machine learning method. Accordingly, it developed an air freshness index (AFI), and the fine-scale mesh-based monitoring of regional air freshness was achieved. The results show that the estimation model for the negative oxygen ion concentration yielded goodness of fit of 0.838 and 0.526 for the training and test sets, respectively. In comparison, the estimation model for the PM2.5 concentration exhibited goodness of fit of 0.968 and 0.867 for the training and test sets, respectively. Then, this study developed the AFI by comprehensively considering negative oxygen ions and PM2.5. Then, this study graded the AFI using the frequency quartiles of the statistical data series combined with the spatiotemporal changes in negative oxygen ions. The results indicate that the AFI monitoring results based on meteorology, remote sensing, and machine learning algorithms are consistent with the actual conditions.

Keywords negative oxygen ion      PM2.5      air freshness index      satellite remote sensing      machine learning     
ZTFLH:  TP751.1  
Issue Date: 03 September 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chungui ZHANG
Jida PENG
Cite this article:   
Chungui ZHANG,Jida PENG. Air freshness monitoring technology based on meteorology and remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3): 163-173.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024074     OR     https://www.gtzyyg.com/EN/Y2024/V36/I3/163
Fig.1  Map of main NOI stations in Fujian
Fig.2  Main technical flow chart of air freshness monitoring based on meteorological and remote sensing
类型 影响因子 相关系数 样本数/个
气象因子 温度 -0.060**① 156 201
湿度 0.125** 156 201
风速 0.016** 85 841
气压 -0.008* 90 644
能见度 0.036** 81 821
生态环境因子 NDVI 0.115** 5 867
NDMI -0.112** 5 867
NDSI -0.105** 5 867
VSWI 0.117** 5 867
LST -0.021* 5 867
AOD -0.062** 5 867
Tab.1  Linear correlation coefficients between NOI concentration and meteorological factors and ecological environment factors
类型 影响因子 相关系数 样本数/个
气象因子 温度 -0.065**① 117 798
湿度 0.013** 117 798
风速 -0.055** 117 798
气压 0.055* 117 798
能见度 -0.137** 117 798
生态环境因子 NDVI -0.233** 117 798
AOD 0.110** 117 798
Tab.2  Linear phase relationship between PM2.5 concentration and meteorological factors and ecological environmental factors
Fig.3  Optimization results of Cubist algorithm committees and instances
Fig.4  Training and testing results of Cubist machine learning model for NOI concentration prediction
Fig.5  Training and testing results of Cubist machine learning model for PM2.5 concentration prediction
Fig.6  Frequency distribution of AFI and its logarithm
空气清新等级 景观类型 低海拔地区 中海拔地区 高海拔地区 平均值
1 国家公园 7 637 4 001
生态保护区 2 336 5 410 2 054
森林公园 4 720 2 224~3 626
2 山区乡镇 4 470 2 617 2 231~3 701 2 464
郊野公园 2 731 2 048
名胜景区 1 566 712~2 097
3 县气象站 1 930 1 586 1 610
县城郊区 1 861 956
海滨景区 1 725
海滨乡镇 772~883
Tab.3  
百分位数
(部分)
ln(AFI) AFI NOI浓度/
(个·cm-3)
PM2.5质量浓
度/(μg·m-3)
15% 3.6 37 993 26.8
20% 3.8 45 1 198 26.6
25% 4.0 54 1 347 24.9
30% 4.2 65 1 422 21.9
35% 4.3 77 1 491 19.4
40% 4.5 93 1 595 17.2
45% 4.7 111 1 628 14.7
50% 4.9 131 1 656 12.6
55% 5.0 156 1 741 11.2
60% 5.2 187 1 780 9.5
65% 5.4 226 1 925 8.5
70% 5.6 275 2 171 7.9
75% 5.8 339 2 221 6.3
80% 6.1 426 2 511 5.9
85% 6.3 561 2 802 5.0
90% 6.8 791 3 644 4.6
91% 6.8 856 4 040 4.5
95% 7.2 1343 4 935 3.7
Tab.4  Normal distribution percentiles of AFI and its logarithm
等级 等级说明 NOI浓度界限值/
(个·cm-3)
AFI界限值/
(μg·m-3)
1 非常清新 ≥2 800 ≥561
2 很清新 [2 000,2 800) [226,561)
3 清新 [1 600,2 000) [93,226)
4 较不清新 [1 200,1 600) [45,93)
5 不清新 <1200 <45
Tab.5  AFI based on meteorological and remote sensing factors
Fig.7  Fine grid monitoring map of air fresh in Fujian
气候康养福地 空气清新度监测模型 气候康养福地 空气清新度监测模型
AFI等级 NOI浓度估算值/
(个·cm-3)
AFI等级 NOI浓度估算值/
(个·cm-3)
福州市闽清县七叠温泉 1级 3 165 龙岩市新罗区培斜村 1级 3 007
福州市福清市大山村 2级 2 298 三明市漳平市永福镇 2级 2 115
厦门市同安区顶村村 1级 3 525 三明市大田县屏山乡 2级 2 064
厦门市海沧区森林公园 2级 2 284 三明市明溪县夏阳乡 1级 2 937
莆田市仙游县西苑乡 1级 3 092 三明市尤溪县度假区 2级 2 525
泉州市德化县国宝乡 1级 3 410 南平市政和县杨源乡 3级 1 867
泉州市永春县牛姆林区 1级 3 134 南平市建阳区黄坑镇 2级 2 530
泉州市永春县苏坑镇 1级 3 021 南平市延平区上洋村 2级 2 088
泉州市南安市向阳乡 1级 3 159 宁德市福安市白云山 1级 2 834
漳州市南靖县土楼景区 1级 2 904 宁德市屏南县寿山乡 2级 2 567
漳州市龙海区鹭凯庄园 2级 2 163 宁德市屏南县龙潭村 1级 2 812
龙岩市武平县城厢镇 2级 2 567 宁德市古田县泮洋乡 1级 3 167
Tab.6  Estimated values of air fresh index and NOI concentration in 24 “climate healthy good places” in Fujian
[1] 刘国庭. 北戴河疗养环境对健康的影响[J]. 中国疗养医学, 2004, 13(1):7-10.
[1] Liu G T. Effect of convalescent and health in environment of Beidaihe[J]. Chinese Journal of Convalescent Medicine, 2004, 13(1):7-10.
[2] Jiang S Y, Ma A, Ramachandran S. Negative air ions and their effects on human health and air quality improvement[J]. International Journal of Molecular Sciences, 2018, 19(10):2966.
[3] Chu C H, Chen S R, Wu C H, et al. The effects of negative air ions on cognitive function:An event-related potential (ERP) study[J]. International Journal of Biometeorology, 2019, 63(10):1309-1317.
[4] 王忠贵. 森林康养对人体健康促进作用浅析[J]. 现代园艺, 2020, 43(1):106-109.
[4] Wang Z G. Analysis on the promotion of forest health to human health[J]. Xiandai Horticulture, 2020, 43(1):106-109.
[5] 彭巍, 李明文, 王慧, 等. 空气负离子国内外研究进展及其在森林康养方面的积极作用综述[J]. 温带林业研究, 2020, 3(3):11-14,54.
[5] Peng W, Li M W, Wang H, et al. A review of the research progress of negative air ion at home and abroad and its positive role in forest health[J]. Journal of Temperate Forestry Research, 2020, 3(3):11-14,54.
[6] Li T, Hu R, Chen Z, et al. Fine particulate matter (PM2.5):The culprit for chronic lung diseases in China[J]. Chronic Diseases and Translational Medicine, 2018, 4(3):176-186.
[7] 孙静, 张勉. PM2.5对呼吸系统损伤的研究进展[J]. 中国当代医药, 2020, 27(14):26-29.
[7] Sun J, Zhang M. Research progress of PM2.5 on respiratory system injury[J]. China Modern Medicine, 2020, 27(14):26-29.
[8] 王伟, 车春莉. 大气细颗粒物的暴露对特发性肺间质纤维化发病机制的影响[J]. 临床肺科杂志, 2021, 26(11):1759-1762.
[8] Wang W, Che C L. Effect of exposure of atmospheric fine particles on the pathogenesis of idiopathic pulmonary interstitial fibrosis[J]. Journal of Clinical Pulmonary Medicine, 2021, 26(11):1759-1762.
[9] 夏廉博. 有益于人体健康的负离子[J]. 大众医学, 1981,(7):36-37.
[9] Xia L B. The negative ions beneficial to human health[J]. Popular Medicine, 1981,(7):36-37.
[10] 林金明, 宋冠群, 赵利霞, 等. 环境、健康与负氧离子[M]. 北京: 化学工业出版社, 2006.
[10] Lin J M, Song G Q, Zhao L X. Environment,health and negative oxygen ions[M]. Beijing: Chemical Industry Press, 2006.
[11] Korublue I H. The clinical effect of aeroionization[J]. Medical Biometerology, 2008, 25(3):16-18.
[12] 饶秀俊. 负氧离子研究的现状和现实意义探讨[J]. 企业科技与发展, 2015(16):27-28,31.
[12] Rao X J. Discussion on the present situation and practical significance of negative oxygen ion research[J]. Sci-Tech & Development of Enterprise, 2015(16):27-28,31.
[13] 李少宁, 韩淑伟, 商天余, 等. 空气负离子监测与评价的国内外研究进展[J]. 安徽农业科学, 2009, 37(8):3736-3738.
[13] Li S N, Han S W, Shang T Y, et al. Research progress on aero-anion’s monitoring and evaluation at home and abroad[J]. Journal of Anhui Agricultural Sciences, 2009, 37(8):3736-3738.
[14] 叶宏萌, 郑茂钟, 姜嘉祺, 等. 校园空气负氧离子浓度分布与空气质量评价[J]. 鸡西大学学报, 2015, 15(4):153-156.
[14] Ye H M, Zheng M Z, Jiang J Q, et al. Distribution of negative oxygen ions concentration and assessment of air quality in campus[J]. Journal of Jixi University, 2015, 15(4):153-156.
[15] 孔健健, 林金明, 张江山. 空气负离子属性评价模型的建立及应用[J]. 环境科学导刊, 2008, 27(5):84-86.
[15] Kong J J, Lin J M, Zhang J S. Construction and application of attribute assessment model of air anion[J]. Environmental Science Survey, 2008, 27(5):84-86.
[16] 王薇, 余庄. 中国城市环境中空气负离子研究进展[J]. 生态环境学报, 2013, 22(4):705-711.
[16] Wang W, Yu Z. Research progress on negative air ions in urban environment in China[J]. Ecology and Environmental Sciences, 2013, 22(4):705-711.
[17] 蒋翠花, 吴新胜, 王文清, 等. 宿迁市区负氧离子浓度变化与气象要素相关分析[J]. 环境保护与循环经济, 2011, 31(8):55-58.
[17] Jiang C H, Wu X S, Wang W Q, et al. Analysis of related meteorological factors change and negative oxygen ion concentration in Suqian City[J]. Environmental Protection and Circular Economy, 2011, 31(8):55-58.
[18] 周德平, 佟维华, 温日红, 等. 闾山国家级森林公园负氧离子观测及其空气质量分析[J]. 干旱区资源与环境, 2015, 29(3):181-187.
[18] Zhou D P, Tong W H, Wen R H, et al. Air negative ions distribution and air quality assessment in Dachaoyang scenic of Yiwulushan,Liaoning,China[J]. Journal of Arid Land Resources and Environment, 2015, 29(3):181-187.
[19] 王宝, 解福燕, 张自祥, 等. 玉溪空气负氧离子预测模型的建立[J]. 高原气象, 2015, 34(1):251-257.
doi: 10.7522/j.issn.1000-0534.2014.00131
[19] Wang B, Xie F Y, Zhang Z X, et al. Forecast model establishment of air negative oxygenion in Yuxi[J]. Plateau Meteorology, 2015, 34(1):251-257.
doi: 10.7522/j.issn.1000-0534.2014.00131
[20] 丛菁, 孙立娟. 大连市负氧离子浓度分布及预测模型的建立[J]. 气象与环境学报, 2010, 26(4):44-47.
[20] Cong J, Sun L J. Distribution of negative oxygen ion concentration and its forecast model in Dalian,Liaoning Province[J]. Journal of Meteorology and Environment, 2010, 26(4):44-47.
[21] 金梅. 合肥市不同生态环境空气离子时空分布及其影响因素的研究[D]. 合肥: 安徽农业大学, 2005.
[21] Jin M. The study on the time-space change of air anion and the influential factors in different ecological environment in Hefei city[D]. Hefei: Anhui Agricultural University, 2005.
[22] 吴际友, 程政红, 龙应忠, 等. 园林树种林分中空气负离子水平的变化[J]. 南京林业大学学报(自然科学版), 2003, 27(4):78-80.
doi: 10.3969/j.jssn.1000-2006.2003.04.020
[22] Wu J Y, Cheng Z H, Long Y Z, et al. The variation of aero-anion concentration on landscape forest[J]. Journal of Nanjing Forestry University, 2003, 27(4):78-80.
[23] 金琪, 严婧, 杨志彪, 等. 湖北春季大气负氧离子浓度分布特征及与环境因子的关系[J]. 气象科技, 2015, 43(4):728-733.
[23] Jin Q, Yan J, Yang Z B, et al. Spatial-temporal characteristics of spring air negative oxygen ions and its relationship with environmental factors in Hubei[J]. Meteorological Science and Technology, 2015, 43(4):728-733.
[24] 赵蕾, 吴坤悌, 陈明. 海南省主要景区负氧离子浓度分布及预报方程研究[J]. 安徽农业科学, 2016, 44(29):189-191,208.
[24] Zhao L, Wu K T, Chen M. Study on the distribution of negative oxygen ion concentration and forecast equation of main scenic spots in Hainan Province[J]. Journal of Anhui Agricultural Sciences, 2016, 44(29):189-191,208.
[25] 陈臻皓, 林子伦, 林金标. 德化大气负氧离子浓度分布及预报方程的建立[J]. 海峡科学, 2021(2):45-48,69.
[25] Chen Z H, Lin Z L, Lin J B. Distribution of negative oxygen ion concentration in Dehua atmosphere and establishment of prediction equation[J]. Straits Science, 2021(2):45-48,69.
[26] 朱冬梅, 曾璐, 刘春盛. 空气负氧离子浓度预报模型在旅游气象中的应用[J]. 中国资源综合利用, 2021, 39(8):73-75,86.
[26] Zhu D M, Zeng L, Liu C S. Application of air negative oxygen ion concentration prediction model in tourism meteorology[J]. China Resources Comprehensive Utilization, 2021, 39(8):73-75,86.
[27] 顾小丽, 钱燕珍, 鲍岳建, 等. 宁波市负氧离子浓度分布与预测模型及其在旅游气象中的应用[J]. 气象与环境学报, 2013, 29(6):128-133.
[27] Gu X L, Qian Y Z, Bao Y J, et al. The distribution of oxygen anion concentration,forecasting model in Ningbo and its application in tourism meteorology[J]. Journal of Meteorology and Environment, 2013, 29(6):128-133.
[28] 张勇, 陈兰英, 刘婷, 等. 峨眉山景区负氧离子浓度变化特征及预测模型研究[J]. 气象与环境学报, 2018, 34(2):61-68.
[28] Zhang Y, Chen L Y, Liu T, et al. Change characteristics and prediction model about concentration of anions in the Emei Mountain scenic spot[J]. Journal of Meteorology and Environment, 2018, 34(2):61-68.
[29] 丁丽华, 顾振海, 吴丹, 等. 开化县负氧离子浓度预测模型的建立[J]. 浙江农业科学, 2017, 58(11):1957-1960.
doi: 10.16178/j.issn.0528-9017.20171129
[29] Ding L H, Gu Z H, Wu D, et al. Establishment of prediction model of negative oxygen ion concentration in Kaihua County[J]. Journal of Zhejiang Agricultural Sciences, 2017, 58(11):1957-1960.
[30] 聂邦胜. 国内外常用的空气质量模式介绍[J]. 江苏环境科技, 2008, 21(s1):125-128.
[30] Nie B S. Introduction of domestic and foreign common air quality model[J]. Environmental Science and Technology, 2008, 21(s1):125-128.
[31] 郭建秋. 空气质量模式发展与应用现状[J]. 环境与发展, 2011, 23(7):89-90,185.
[31] Guo J Q. Development and application status of air quality model[J]. Environment & Development, 2011, 23(7):89-90,185.
[32] 高雅, 刘杨, 吕佳佩. 空气质量模型研究进展综述[J]. 环境污染与防治, 2022, 44(7):939-943.
[32] Gao Y, Liu Y, Lyu J P. A review of air quality models research progress[J]. Environmental Pollution & Control, 2022, 44(7):939-943.
[33] 陈良富, 陶金花, 王子峰, 等. 空气质量卫星遥感监测技术进展[J]. 大气与环境光学学报, 2015, 10(2):117.
[33] Chen L F, Tao J H, Wang Z F, et al. Review of satellite remote sensing of air quality[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2):117.
[34] 向娟, 陶明辉, 郭玲, 等. 基于卫星遥感的近地面PM2.5浓度反演进展[J]. 遥感学报, 2022, 26(9):1757-1776.
[34] Xiang J, Tao M H, Guo L, et al. Progress of near-surface PM2.5 concentration retrieve based on satellite remote sensing[J]. National Remote Sensing Bulletin, 2022, 26(9):1757-1776.
[35] Lee H J, Chatfield R B, Strawa A W. Enhancing the applicability of satellite remote sensing for PM2.5 estimation using MODIS deep blue AOD and land use regression in California,United States[J]. Environmental Science & Technology, 2016, 50(12):6546-6555.
[36] 李永辉, 汪洋, 易清传, 等. 基于卫星遥感MODIS数据反演南昌市2004-2015年空气质量变化研究[J]. 江西师范大学学报(自然科学版), 2019, 43(2):214-220.
[36] Li Y H, Wang Y, Yi Q C, et al. The study on air quality change of Nanchang City from 2004 to 2015 years based on satellite remote sensing MODIS data[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2019, 43(2):214-220.
[37] Yang Z, Zdanski C, Farkas D, et al. Evaluation of aerosol optical depth (AOD) and PM2.5 associations for air quality assessment[J]. Remote Sensing Applications:Society and Environment, 2020, 20:100396.
[38] Wei J, Huang W, Li Z, et al. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach[J]. Remote Sensing of Environment, 2019, 231:111221.
[39] Zeng Z, Gui K, Wang Z, et al. Estimating hourly surface PM2.5 concentrations across China from high-density meteorological observations by machine learning[J]. Atmospheric Research, 2021, 254:105516.
[40] 福建省生态环境厅. 福建省生态环境状况公报(1995—2022年)[EB/OL]. [2024-06-06]. https://sthjt.fujian.gov.cn/zwgk/sjfb/hjsj/qshjzkgb/.
url: https://sthjt.fujian.gov.cn/zwgk/sjfb/hjsj/qshjzkgb/
[40] Fujian Provincial Department of Ecology and Environment. Fujian ecological environment status Bulletin.(1995—2022)[EB/OL]. [2024-06-06]. https://sthjt.fujian.gov.cn/zwgk/sjfb/hjsj/qshjzkgb/.
url: https://sthjt.fujian.gov.cn/zwgk/sjfb/hjsj/qshjzkgb/
[41] 潘群, 施海洋, 张文强, 等. 基于Cubist模型的天山北坡草地鼠群密度时空分布特征[J]. 干旱区地理, 2022, 45(4):1200-1211.
[41] Pan Q, Shi H Y, Zhang W Q, et al. Spatiotemporal distribution of rat population density in grassland on the north slope of Tianshan Mountains based on Cubist model[J]. Arid Land Geography, 2022, 45(4):1200-1211.
[42] 文高峰. 基于Cubist算法的临汾市GPM卫星降水数据降尺度研究[J]. 水利技术监督, 2023, 31(11):59-61,78.
[42] Wen G F. Research on downscaling of GPM satellite precipitation data based on Cubist algorithm in Linfen city[J]. Technical Supervision in Water Resources, 2023, 31(11):59-61,78.
[43] 全澍, 刘禹函, 刘淼晗, 等. 河南省2014—2020年PM2.5浓度时空分布特征及气象成因分析[J]. 中国环境监测, 2023, 39(1):69-80.
[43] Quan S, Liu Y H, Liu M H, et al. Spatial and temporal characteristics and correlation analysis of meteorological factors on PM2.5 concentration in Henan Province from 2014 to 2020[J]. Environmental Monitoring in China, 2023, 39(1):69-80.
[44] 卫星君, 赵晓萌, 王琦, 等. 基于特征指标的气象因子对PM2.5浓度的影响分析[J]. 中国环境监测, 2022, 38(6):90-100.
[44] Wei X J, Zhao X M, Wang Q, et al. The analysis of the influence of meteorological factors on PM2.5 concentration based on characteristic index[J]. Environmental Monitoring in China, 2022, 38(6):90-100.
[45] 周敏丹, 匡耀求, 云国梁. 基于地理探测器的广州市大气PM2.5浓度驱动因素分析[J]. 环境科学研究, 2020, 33(2):271-279.
[45] Zhou M D, Kuang Y Q, Yun G L. Analysis of driving factors of atmospheric PM2.5 concentration in Guangzhou city based on geo-detector[J]. Research of Environmental Sciences, 2020, 33(2):271-279.
[46] 王嫣然, 张学霞, 赵静瑶, 等. 2013—2014年北京地区PM2.5时空分布规律及其与植被覆盖度关系的研究[J]. 生态环境学报, 2016, 25(1):103-111.
doi: 10.16258/j.cnki.1674-5906.2016.01.015
[46] Wang Y R, Zhang X X, Zhao J Y, et al. Temporal and spatial distribution of PM2.5 and its relationship with vegetation coverage in Beijing during the period of 2013─2014[J]. Ecology and Environmental Sciences, 2016, 25(1):103-111.
[47] 杨玉莲, 杨昆, 罗毅, 等. 1998—2016中国八大经济区植被覆盖对PM2.5浓度时空分布的影响[J]. 环境科学, 2021, 42(11):5100-5108.
[47] Yang Y L, Yang K, Luo Y, et al. Effect of vegetation coverage on the temporal and spatial distribution of PM2.5 concentration in China’s eight major economic regions from 1998 to 2016[J]. Environmental Science, 2021, 42(11):5100-5108.
[48] 李杨. 负氧离子、PM2.5分布格局——以西安市林区及城区比较为例[J]. 科技创新与应用, 2016(22):178.
[48] Li Y. Distribution pattern of negative oxygen ions and PM2.5:A case study of comparison between forest areas and urban areas in Xi’an City[J]. Technology Innovation and Application, 2016(22):178.
[1] LUO Wei, LI Xiuhua, QIN Huojuan, ZHANG Muqing, WANG Zeping, JIANG Zhuhui. Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(3): 248-258.
[2] ZHOU Xiaojia. Application of remote sensing monitoring in abandoned arable land in a hilly region[J]. Remote Sensing for Natural Resources, 2024, 36(1): 235-241.
[3] WANG Yumiao, LI Sheng, DONG Chunyu, YANG Gang. Remote sensing information extraction for mangrove forests based on multi-feature parameters: A case study of Guangdong Province[J]. Remote Sensing for Natural Resources, 2024, 36(1): 95-102.
[4] LI Kailin, LIAO Kuo, DANG Haofei. Recent progress in chromaticity remote sensing of inland and nearshore water bodies[J]. Remote Sensing for Natural Resources, 2023, 35(1): 15-26.
[5] HUANG Xiaoyu, WANG Xuemei, KAWUQIATI Baishan. Inversion of soil salinity of an oasis in an arid area based on Landsat8 OLI images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 189-197.
[6] LI Xianfeng, YUAN Zhengguo, DENG Weihua, YANG Liyuan, ZHOU Xueying, HU Lili. Spatial downscaling methods for the 2-meter air temperature grid data based on multiple machine learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 57-65.
[7] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[8] CHAO Zhenhua, CHE Mingliang, HOU Shengfang. Brief review of vegetation phenological information extraction software based on time series remote sensing data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 19-25.
[9] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[10] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[11] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[12] YANG Lijuan. Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model[J]. Remote Sensing for Land & Resources, 2020, 32(4): 137-144.
[13] Hailing GU, Chao CHEN, Ying LU, Yanli CHU. Construction of regional economic development model based on satellite remote sensing technology[J]. Remote Sensing for Land & Resources, 2020, 32(2): 226-232.
[14] Xun ZHOU, Yuebin WANG, Suhong LIU, Peixin YU, Xikai WANG. A machine learning algorithm for automatic identification of cultivated land in remote sensing images[J]. Remote Sensing for Land & Resources, 2018, 30(4): 68-73.
[15] Kaiduan ZHENG, Jian CHEN, Jie ZHOU, Shaoxin GAO. Research on monitoring of a severe haze pollution over Yangtze River Delta based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(1): 224-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech