Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (3): 106-112    DOI: 10.6046/gtzyyg.2014.03.17
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
祁连山冻土带天然气水合物遥感探测数据分析与评价
刘松1, 邢学文1, 张强1, 杨明国2
1. 中国石油勘探开发研究院, 北京 100083;
2. 中国地质大学(武汉), 武汉 430074
Gas hydrate detection and assessment with remote sensing data of permafrost in the Qilian Mountain
LIU Song1, XING Xuewen1, ZHANG Qiang1, YANG Mingguo2
1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
2. China University of Geosciences, Wuhan 430074, China
全文: PDF(3371 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 在全球气候变暖影响下,冻土带中保存的天然气水合物被逐渐分解释放进入大气,改变了冻土带上空的大气甲烷(CH4)浓度。以地面甲烷遥感探测实验为基础,发现甲烷气体在380 ~ 2 500 nm电磁波谱范围内存在2个明显的吸收谱段(1 700 nm和2 300 nm附近),从机理上解释了对大气甲烷的遥感检测能力,肯定了遥感探测天然气水合物的可行性。选择扫描成像吸收光谱大气制图仪(scanning imaging absorption spectrometer for atmospheric chartography,SCIAMACHY)传感器反演的祁连山冻土带大气甲烷数据,分析了2003-2006年间冻土带大气甲烷的时空变化规律。结果表明:冻土带大气甲烷含量不仅随季节呈现单峰-单谷型的变化规律,而且总体上还随时间推移有明显的递增趋势,可初步认为是冻土带天然气水合物分解释放引起的。以2006年2月冻土带大气甲烷浓度异常图为依据,结合地理和地质资料,对祁连山冻土带天然气水合物的资源潜力进行了评价,认为木里煤田的江仓和热水矿区应该是潜在的天然气水合物赋存区。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成宝芝
关键词 高光谱图像异常目标检测核函数支持向量数据描述    
Abstract:Gas hydrate in permafrost gradually decomposes and seeps to atmosphere because of global warming,and the seepage changes the methane (CH4) concentration of permafrost's atmosphere. In this paper, the possibility of gas hydrate detection with remote sensing data is proved by the nature gas detection experiments performed with domestic nature gas and ASD portable spectrometer. The experimental results show that two feature absorptions,spectra around 1 700 nm and 2 300 nm,are founded in the electromagnetic wave range from 380 to 2500 nm. Supported by the experiment,the authors selected the remote sensing data retrieved from the scanning imaging absorption spectrometer for atmospheric chartography (SCIAMACHY) sensor during the period from 2003 to 2006 to analyze temporal and spatial changes of atmospheric methane of the permafrost in the Qilian Mountain. In addition to the discovery of methane concentration's seasonal changes,the trend of its gradual increment characteristics was also detected. This phenomenon is considered to be the result of methane seepage from underground gas hydrate. Finally,in combination with the geological data, the atmospheric methane anomaly in February 2006 was used to evaluate the potential of gas hydrate of the permafrost in the Qilian Mountain and, as a result, a new prospecting area was recommended.
Key wordshyperspectral image    anomaly target detection    kernel function    support vector data description(SVDD)
收稿日期: 2013-06-13      出版日期: 2014-07-01
:  TP79  
  P627  
基金资助:国家科技重大专项“复杂储层油气测井解释理论方法与处理技术”(编号:2011ZX05020-008)资助。
作者简介: 刘松(1972-),男,高级工程师,主要从事遥感信息技术方面的研究。Email:songliu@petrochina.com.cn。
引用本文:   
刘松, 邢学文, 张强, 杨明国. 祁连山冻土带天然气水合物遥感探测数据分析与评价[J]. 国土资源遥感, 2014, 26(3): 106-112.
LIU Song, XING Xuewen, ZHANG Qiang, YANG Mingguo. Gas hydrate detection and assessment with remote sensing data of permafrost in the Qilian Mountain. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 106-112.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.03.17      或      https://www.gtzyyg.com/CN/Y2014/V26/I3/106
[1] Kvenvolden K A.天然气水合物基本知识[J].杨木状,译.海洋地质,2000(3):10-23. Kvenvolden K A.Basic knowledge of gas hydrate[J].Yang M Z,Trans.Marine Geology,2000(3):10-23.
[2] 陈圣波,刘闯,郭广猛.新一代地球观测信息在天然气水合物研究中的应用展望[J].自然资源学报,2002,17(4):470-475. Chen S B,Liu C,Guo G M.Future on the EOS(earth observing system)information applied to the gas hydrate[J].Journal of Natural Resources,2002,17(4):470-475.
[3] 卢振权,强祖基,吴必豪.利用卫星热红外遥感探测南海天然气水合物[J].地质学报,2002,76(1):100-107. Lu Z Q,Qiang Z J,Wu B H.Exploring gas hydrates by satellite-based thermal infrared remote sensing in the South China Sea[J].Acta Geologica Sinica,2002,76(1):100-107.
[4] 卢振权,强祖基,吴必豪.南海临震前卫星热红外增温异常原因初探[J].地球学报,2002,23(1):42-46. Lu Z Q,Qiang Z J,Wu B H.A tentative interpretation of the formation of high temperature anomaly in satellite-based thermal infrared scanning images(STISI)of the South China Sea before earthquake[J].Acta Geosicientia Sinica,2002,23(1):42-46.
[5] 马立杰.利用卫星遥感探测海域天然气水合物[D].青岛:中国科学院海洋研究所,2005. Ma L J.Detection of oceanic gas hydrate by satellite remote sensing[D].Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2005.
[6] 周强.陆域天然气水合物遥感探测研究[D].北京:中国地质大学(北京),2006. Zhou Q.Investigation on gashydrate in permafrost using remote sensing technique[D].Beijing:China University of Geosciences(Beijing),2006.
[7] 孙春岩,牛滨华,王宏语,等.西沙海槽研究区天然气水合物地球化学勘探及成藏模式研究[J].地学前缘,2005,12(1):243-251. Sun C Y,Niu B H,Wang H Y,et al.A study of gas hydrate geochemical exploration and deposit formation patterns in the Xisha ocean[J].Earth Science Frontiers,2005,12(1):243-251.
[8] Winkelmann K.On the applicability of imaging spectrometry for the detection and investigation of contaminated sites with particular consideration given to the detection of fuel hydrocarbon contaminants in soil[D].Berlin:BTU Cottbus,2005.
[9] 许惠青.大气甲烷研究现状及进展[J].内蒙古科技与经济,2010(11):41-42. Xu H Q.Research status and progress of atmospheric methane[J].Inner Mongolia Science Technology and Economy,2010(11):41-42.
[10] 张秀君.大气甲烷源和汇的研究[J].沈阳教育学院学报,2004,6(1):132-134. Zhang X J.The major sources and sinks for atmospheric methane[J].Journal of Shenyang College of Education,2004,6(1):132-134.
[11] Schneising O,Buchwitz M,Burrows J P,et al.Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite-Part 2:Methane[J].Atmospheric Chemistry Physics,2009,9:443-465.
[12] 祝有海,张省民,卢振权,等.我国陆域永久冻土带天然气水合物资源远景调查[R].北京:中国地质科学院矿产资源研究所,2007. Zhu Y H,Zhang S M,Lu Z Q,et al.The investigation of gashydrate potential in Chinese permafrost[R].Beijing:Institute of Mineral Resources,CAGS,2007.
[13] 冯益民.祁连造山带研究概况——历史、现状及展望[J].地球科学进展,1997,12(4):307-314. Feng Y M.Investigatory summary of the Qilian orogenic belt,China:History,presence and prospect[J].Advance in Earth Sciences,1997,12(4):307-314.
[14] 符俊辉,周立发.南祁连盆地石炭一侏罗系地层区划及石油地质特征[J].西北地质科学,1998,19(2):47-54. Fu J H,Zhou L F.Carboniferous-Jurassic stratigraphic provinces of the Southern Qilian Basin and their petro-geological features[J].Northwest Geoscience,1998,19(2):47-54.
[15] 符俊辉,周立发.南祁连盆地三叠纪地层及石油地质特征[J].西北地质科学,2000,21(2):64-72. Fu J H,Zhou L F.Triassic stratigraphic provinces of the Southern Qilian Basin and their petro-geological features[J].Northwest Geoscience,2000,21(2):64-72.
[16] 卢振权,祝有海,张永勤,等.青海省祁连山冻土区天然气水合物基本地质特征[J].矿床地质,2010,29(1):182-191. Lu Z Q,Zhu Y H,Zhang Y Q,et al.Basic geological characteristics of gas hydrates in Qilian Mountain permafrost area,Qinghai Province[J].Mineral Deposits,2010,29(1):182-191.
[17] 祝有海,张永勤,文怀军.祁连山冻土区天然气水合物及其基本特征[J].地球学报,2010,31(1):7-16. Zhu Y H,Zhang Y Q,Wen H J.Gas hydrates in the Qilian Mountain permafrost and their basic characteristics[J].Acta Geosicientica Sinica,2010,31(1):7-16.
[18] 黄霞,祝有海,王平康,等.祁连山冻土区天然气水合物烃类气体组分的特征和成因[J].地质通报,2011,30(12):1851-1856. Huang X,Zhu Y H,Wang P K,et al.Hydrocarbon gas composition and origin of core gas from the gas hydrate reservoir in Qilian Mountain permafrost[J].Geological Bulletin of China,2011,30(12):1851-1856.
[19] 王佟,刘天绩,邵龙义,等.青海木里煤田天然气水合物特征与成因[J].煤田地质与勘探,2009,37(6):26-30. Wang T,Liu T J,Shao L Y,et al.Characteristics and origins of the gas hydrates in the Muli coalfield of Qinghai[J].Coal Geology and Exploration,2009,37(6):26-30.
[20] 刘昌岭,贺行良,孟庆国,等.祁连山冻土区天然气水合物分解气碳氢同位素组成特征[J].岩矿测试,2012,31(3):489-494. Liu C L,He X L,Meng Q G,et al.Carbon and hydrogen isotopic compositions characteristics of the released gas from natural gas hydrates in the Qilian Mountain permafrost[J].Rock and Mineral Analysis,2012,31(3):489-494.
[21] 庞守吉,苏新,何浩,等.祁连山冻土区天然气水合物地质控制因素分析[J].地学前缘,2013,20(1):223-239. Pang S J,Su X,He H,et al.Geological controlling factors of gas hydrate occurrence in Qilian Mountain permafrost,China[J].Earth Science Frontiers,2013,20(1):223-239.
[22] Schneising O.Sciamachy WFM-DOAS(WFMD)carbon dioxide and methane dry air column-averaged mole fractions-algorithm description and product specification[G].Institute of Environmental Physics,University of Bremen,2011.
[23] 张国君,乐群.基于Sciamachy WFM-DOAS数据的中国CH4柱浓度时空分布[C]//第七届长三角气象科技论坛论文集.2010:503-507. Zhang G J,Yue Q.Temporal and spatial distribution of Chinese CH4 column based on Sciamachy WFM-DOAS data[C]//Anthology of Seventh Meteorological Science and Technology Forum of Yangtze River Delta.2010:503-507.
[24] 张国君,乐群.利用Sciamachy资料分析中国CH4柱浓度分布[J].地理空间信息,2011,9(4):115-117. Zhang G J,Yue Q.Distribution of CH4 column in China using Sciamachy data[J].Geospatial Information,2011,9(4):115-117.
[25] 王嵩,张廷江.青海煤层气资源概况及找气方向[J].青海地质,1997,6(2):43-49. Wang S,Zhang Y J.A survey of coal gas resources in Qinghai and the way of coal gas prospecting[J].Qinghai Geology,1997,6(2):43-49.
[26] 张凤鸣.木里煤田的冻土[J].煤田地质与勘探,1989(3):50-54. Zhang F M.Permafrost in Muli coal field[J].Coal Geology and Exploration,1989(3):50-54.
[27] 吴吉春,盛煜,于辉,等.祁连山中东部的冻土特征(I):多年冻土分布[J].冰川冻土,2007,29(3):418-425. Wu J C,Sheng Y,Yu H,et al.Permafrost in the middle-east section of Qilian Mountains(I):Distribution of permafrost[J].Journal of Glaciology and Geocryology,2007,29(3):418-425.
[28] 吴吉春,盛煜,于辉,等.祁连山中东部的冻土特征(Ⅱ):多年冻土特征[J].冰川冻土,2007,29(3):426-432. Wu J C,Sheng Y,Yu H,et al.Permafrost in the middle-east section of Qilian Mountains(Ⅱ):Characters of permafrost[J].Journal of Glaciology and Geocryology,2007,29(3):426-432.
[1] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[2] 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3): 63-71.
[3] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[4] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[5] 阿茹罕, 何芳, 王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[6] 曲海成, 郭月, 王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法[J]. 国土资源遥感, 2019, 31(2): 24-31.
[7] 涂兵, 张晓飞, 张国云, 王锦萍, 周瑶. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1): 22-32.
[8] 刘万军, 李天慧, 曲海成. 基于Fisher准则和TrAdaboost的高光谱相似样本分类算法[J]. 国土资源遥感, 2018, 30(4): 41-48.
[9] 江帆, 张晨洁. 利用NSCT和空间聚类的高光谱图像全局异常检测[J]. 国土资源遥感, 2017, 29(2): 53-59.
[10] 张媛, 张杰林, 赵学胜, 袁博. 基于峰值权重的岩心高光谱矿化蚀变信息提取[J]. 国土资源遥感, 2015, 27(2): 154-159.
[11] 张转, 马玉, 蔡伟. 基于模糊贴近度和改进Prim算法的高光谱图像波段分组排序[J]. 国土资源遥感, 2014, 26(4): 8-13.
[12] 成宝芝. 高光谱图像异常目标检测算法研究与进展[J]. 国土资源遥感, 2014, 26(3): 1-7.
[13] 吕凤华, 舒宁, 陶建斌, 付晶. 基于可变步长的光谱响应曲线分形维[J]. 国土资源遥感, 2011, 23(1): 37-41.
[14] 杨杭, 张霞, 和海霞, 张立福, 童庆禧.
OMIS-II机载高光谱遥感图像边缘辐射畸变校正方法优选
[J]. 国土资源遥感, 2010, 22(2): 17-21.
[15] 张艳, 王国宏, 王勇. 背景区域对统计匹配滤波探测器性能的影响[J]. 国土资源遥感, 2010, 22(2): 26-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发