Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (3): 99-105    DOI: 10.6046/gtzyyg.2014.03.16
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
四川芦山地震次生地质灾害遥感调查及灾害特征初探
郭兆成, 童立强, 郑雄伟, 齐建伟, 王建超
中国国土资源航空物探遥感中心, 北京 100083
Remote sensing survey of secondary geological disasters triggered by Lushan earthquake in Sichuan Province and tentative discussion on disaster characteristics
GUO Zhaocheng, TONG Liqiang, ZHENG Xiongwei, QI Jianwei, WANG Jianchao
China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
全文: PDF(6118 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 2013年4月20日,四川省雅安市芦山县境内发生MS 7.0级地震。为充分发挥遥感技术在地震灾害应急决策、救援及震后恢复重建中的作用,利用地震前后的多源遥感数据,基于遥感图像人机交互解译和野外现场考察,研究了芦山地震次生地质灾害的特征及其空间分布。遥感调查结果表明,芦山地震引发了1 678处次生地质灾害,覆盖地表面积约8.354 km2,具有规模小且以崩塌、落石为主要灾害类型的特点。基于地震前的地形数据,研究了次生地质灾害的空间分布与高程、坡度的关系。对次生地质灾害分布特征的统计分析结果显示,95%的次生地质灾害分布在海拔750~1 850 m之间;82.5%的次生地质灾害分布在地形坡度15°~50°之间,但随着坡度的增加,次生地质灾害发生率显著升高。在空间分布上,芦山地震次生地质灾害呈现显著的线性排列:或沿NE向发震断裂线性排布,或沿山脊和河谷线性排列。研究结果为芦山地震应急决策、救援及震后恢复重建提供了重要依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
和海霞
陈伟涛
吴玮
李亚飞
关键词 Charter遥感数据获取机制灾害    
Abstract:On April 20,2013,a catastrophic earthquake with MS 7.0 occurred in Lushan County,Sichuan Province. Using the multi-source remote sensing data acquired before and after the earthquake,the authors analyzed the secondary geological disasters and their spatial distribution based on interactive visual interpretation and field survey. The remote sensing investigation results have shown that the earthquake has triggered 1 678 secondary geological disasters,covering an area of about 8.354 km2. The secondary geological disasters are characterized by smaller scale and dominance of collapse and rockfall types. Using the terrain data before the earthquake,the authors analyzed the relationship between the distribution of secondary geological disasters and the elevation and slope. Statistical and analytical results show that 95% of the secondary geological disasters are located in the area with the elevation between 750~1 850 m,and 82.5% of the secondary geological disasters are located in the area with the slope between 15 °~ 50°. With the increasing slopes,however, the incidence of the secondary geological disasters increases significantly. The secondary geological disasters assume remarkable linear arrangements, with some distributed along the NE-trending seismogenic fault and the others along the mountain ridge and river valley. The results obtained by the authors provide some important information for the emergency decision-making,rescue and reconstruction after the earthquake.
Key wordsCharter    remote sensing    data acquisition mechanism    disaster
收稿日期: 2013-07-10      出版日期: 2014-07-01
:  TP79  
作者简介: 郭兆成(1979-),男,博士,主要从事遥感地质及环境应用研究。Email:gzc1979@126.com。
引用本文:   
郭兆成, 童立强, 郑雄伟, 齐建伟, 王建超. 四川芦山地震次生地质灾害遥感调查及灾害特征初探[J]. 国土资源遥感, 2014, 26(3): 99-105.
GUO Zhaocheng, TONG Liqiang, ZHENG Xiongwei, QI Jianwei, WANG Jianchao. Remote sensing survey of secondary geological disasters triggered by Lushan earthquake in Sichuan Province and tentative discussion on disaster characteristics. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 99-105.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.03.16      或      https://www.gtzyyg.com/CN/Y2014/V26/I3/99
[1] 张广伟,雷建设.四川芦山7.0级强震及其余震序列重定位[J].地球物理学报,2013,56(5):1764-1771. Zhang G W,Lei J S.Relocations of Lushan,Sichuan strong earthquake(MS7.0)and its aftershocks[J].Chinese Journal of Geophysics,2013,56(5):1764-1771.
[2] 陈晓清,崔鹏,游勇,等.4·20芦山地震次生山地灾害与减灾对策[J].地学前缘,2013,20(3):29-34. Chen X Q,Cui P,You Y,et al.Secondary mountain disasters induced by 4·20 Lushan earthquake and disaster mitigation[J].Earth Science Frontiers,2013:20(3):29-34.
[3] 殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16(4):433-444. Yin Y P.Researches on the geo-hazards triggered by Wenchuan earthquake,Sichuan[J].Journal of Engineering Geology,2008,16(4):7-12.
[4] 张永双,雷伟志,石菊松,等.四川5·12地震次生地质灾害的基本特征初析[J].地质力学学报,2008,14(2):109-116. Zhang Y S,Lei W Z,Shi J S,et al.General characteristics of 5·12 earthquake-induced geohazards in Sichuan[J].Journal of Geomechanics,2008,14(2):109-116.
[5] 许冲,戴福初,陈剑,等.汶川Ms8.0地震重灾区次生地质灾害遥感精细解译[J].遥感学报,2009,13(4):754-762. Xu C,Dai F C,Chen J,et al.Identification and analysis of secondary geological hazards triggered by a magnitude 8.0 Wenchuan earthquake[J].Journal of Remote Sensing,2009,13(4):754-762.
[6] 许强,黄润秋.5·12汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报,2008,16(6):721-729. Xu Q,Huang R Q.Kinetics characteristics of large landslide triggered by May 12th Wenchuan earthquake[J].Journal of Engineering Geology,2008,16(6):721-729.
[7] 童立强."5·12"汶川大地震极重灾区地震堰塞湖应急遥感调查[J].国土资源遥感,2008,20(3):61-64. Tong L Q.Emergency remote sensing investigation of barrier lakes at the quake at the quake center area caused by"5·12"Wenchuan strong earthquake[J].Remote Sensing for Land and Resources,2008,20(3):61-64.
[8] 童立强,郭兆成.典型滑坡遥感影像特征研究[J].国土资源遥感,2013,25(1):86-92. Tong L Q,Guo Z C.A study of remote sensing image features of typical landslides[J].Remote Sensing for Land and Resources,2013,25(1):86-92.
[9] 徐锡伟,陈桂华,于贵华,等.芦山地震发震构造及其与汶川地震关系讨论[J].地学前缘,2013,20(3):11-20. Xu X W,Chen G H,Yu G H,et al.Seismogenic structure of Lushan earthquake and its relationship with Wenchuan earthquake[J].Earth Science Frontiers,2013,20(3):11-20.
[10] 张勇,许力生,陈运泰.芦山4·20地震破裂过程及其致灾特征初步分析[J].地球物理学报,2013,56(4):1408-1411. Zhang Y,Xu L S,Chen Y T.Rupture process of the Lushan 4·20 earthquake and preliminary analysis on the disaster-causing mechanism[J].Chinese Journal Geophysics,2013,56(4):1408-1411.
[11] 李小文.汶川震灾中遥感的应急与反思[J].遥感学报,2008,12(6):838. Li X W.Emergency reaction and introspection of remote sensing in Wenchuan earthquake disaster[J].Journal of Remote Sensing,2008,12(6):838.
[12] 刘金玉,张景发,刘国林.基于高分辨率SAR图像成像机理的震害信息分析[J].国土资源遥感,2013,25(3):61-65. Liu J Y,Zhang J F,Liu G L.An analysis of earthquake damage information based on imaging mechanism of the high resolution SAR image[J].Remote Sensing for Land and Resources,2013,25(3):61-65.
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[13] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[14] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[15] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发