Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (3): 92-98    DOI: 10.6046/gtzyyg.2015.03.16
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于遥感与GIS的中国湖泊形态分析
刘蕾1,2,3, 臧淑英2, 邵田田1, 魏锦宏1, 宋开山1
1. 中国科学院东北地理与农业生态研究所, 长春 130102;
2. 哈尔滨师范大学黑龙江省普通高等学校地理环境遥感监测重点实验室, 哈尔滨 150025;
3. 黑龙江第三测绘工程院, 哈尔滨 150025
Characterization of lake morphology in China using remote sensing and GIS
LIU Lei1,2,3, ZANG Shuying2, SHAO Tiantian1, WEI Jinhong1, SONG Kaishan1
1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
2. College of Heilongjiang Province, Key Laboratory of Remote Sensing Monitoring of Geographic Environment, Harbin Normal University, Harbin 150025, China;
3. The Third Surveying and Mapping Engineering Institute of Heilongjiang, Harbin 150025, China
全文: PDF(2638 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 基于2010年Landsat TM/ETM数据,结合Google Earth影像和其他资料,采用面向对象的分类方法,以30 m的分割尺度对图像进行分割,并通过比值指数、归一化差值水体指数及谱间关系等指数来提取水体信息,将水体分为河渠、湖泊及水库坑塘3类,并对分类结果进行精度验证,最终得到中国湖泊空间分布信息; 以此为基础,计算出反映湖泊形态的景观指数(如形状指数、近圆形指数及分维数等),并结合湖泊的面积和湖泊岸线长度来说明湖泊的基本状况及其形状的复杂程度。结果表明: 利用面向对象分类方法可以得到较高的分类精度,3种类型水体分类的总精度为93%,湖泊分类精度达到90%以上; 在中国内陆,面积大于1.0 km2的自然湖泊2 477个,总面积约77 934.72 km2; 在5个湖区中,青藏高原湖区的湖泊面积最大,占湖泊总面积的54.34%,其形状指数和分维数均值为最小,湖泊形态比较简单; 东部平原湖区降雨充沛,水系发达, 其形状指数和分维数均值最大,湖泊岸线更加曲折,形态复杂多变; 通过分析得出,形状指数与分维数有明显的相关性(R2 = 0.95),湖泊岸线分维数值越高,其形状指数越大,岸线越复杂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张月
肖彧
常晶晶
刘健
王亚琼
贺春燕
何冰
关键词 大气校正遥感指数MODIS太湖藻华    
Abstract:Based on 2010 Landsat TM/ETM+ satellite remote sensing imagery data and referring to Google Earth imageries and other historical documents, the authors used object-oriented classification method to extract inland water bodies across China. The authors set imagery segmentation scale at 30 m, and extracted water bodies with ratio index, Normalized Difference Water Index (NDWI) and spectral relation. There are three types of water, i.e., rivers, lakes, and reservoirs. Finally, the spatial distribution of lakes in China was obtained. Using ArcGIS software package, lake area, shoreline length, shape index (SI), related circumscribing circle (RCC), fractal dimension (FD) and other landscape indices, the authors conducted calculation, and divided China into five lake districts according to previous researches. The differences of lake morphology were comparatively analyzed in the five lake districts. The results show that the object-oriented classification method has better classification accuracy. The overall accuracy of the three types of water is 93%, and the classification accuracy of the lake is over 90%. Statistically, the number of lakes with area greater than 1.0 km2 is 2 477, totaling 77 934.72 km2. The Qinghai-Tibet Plateau Lake District (QTPLD) has the largest lake area, accounting for 54.34% of the total lake area in China. The averages of SI and FD are the minimum, thus the lake morphology is simple in the QTPLD. However, the rainfall is abundant and the water system is well developed in Eastern Plain Lake District (EPLD). Its averages of SI and FD are the maximum among all the sub-lake regions. The lake shoreline is more zigzag, and hence the lake morphology is more complex in the EPLD. In addition, SI and FD have significant correlation (R2 = 0.95). The higher the FD of the lake, the greater the observed SI.
Key wordsatmospheric correction    remote sensing indices    MODIS    Taihu Lake    cyanobacteria bloom
收稿日期: 2014-04-17      出版日期: 2015-07-23
:  TP79  
基金资助:国家自然科学基金项目"松嫩平原LUCC对湖沼湿地生态系统的影响及调控机理研究"(编号: 41030743)资助。
通讯作者: 宋开山(1974-),男,研究员,主要研究方向为水环境遥感。Email:songks@neigae.ac.cn。
作者简介: 刘蕾(1989-),女,硕士研究生,主要研究方向为遥感与生态环境。Email:liulei19890105@163.com。
引用本文:   
刘蕾, 臧淑英, 邵田田, 魏锦宏, 宋开山. 基于遥感与GIS的中国湖泊形态分析[J]. 国土资源遥感, 2015, 27(3): 92-98.
LIU Lei, ZANG Shuying, SHAO Tiantian, WEI Jinhong, SONG Kaishan. Characterization of lake morphology in China using remote sensing and GIS. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 92-98.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.03.16      或      https://www.gtzyyg.com/CN/Y2015/V27/I3/92
[1] 中国环境科学研究院.湖泊生态安全调查与评估[M].北京:科学出版社,2012:1-19. Chinese Research Academy of Environmental Sciences.Investigation and Evaluation of Lake Ecological Security[M].Beijing:Science Press,2012:1-19.
[2] 霍雨.鄱阳湖形态特征及其对流域水沙变化响应研究[D].南京:南京大学,2011. Huo Y.Poyang Lake Morphological Characteristics and Its Response to Runoff and Sediment of Poyang Lake Basin[D].Nanjing:Nanjing University,2011.
[3] 闫强,廖静娟,沈国状.近40年乌兰乌拉湖变化的遥感分析与水文模型模拟[J].国土资源遥感,2014,26(1):152-157.doi:10.6046/gtzyyg.2014.01.26. Yan Q,Liao J J,Shen G Z.Remote sensing analysis and simulation of change of Ulan UI Lake in the past 40 years[J].Remote Sensing for Land and Resources,2014,26(1):152-157.doi:10.6046/gtzyyg.2014.01.26.
[4] 纪鹏,郭华东,张露.近20年西昆仑地区冰川动态变化遥感研究[J].国土资源遥感,2013,25(1):93-98.doi:10.6046/gtzyyg.2013.01.17. Ji P,Guo H D,Zhang L.Remote sensing study of glacier dynamic change in West Kunlun Mountains in the past 20 years[J].Remote Sensing for Land and Resources,2013,25(1):93-98.doi:10.6046/gtzyyg.2013.01.17.
[5] 黄卫东,廖静娟,沈国状.近40年西藏那曲南部湖泊变化及其成因探讨[J].国土资源遥感,2012,24(3):122-128.doi:10.6046/gtzyyg.2012.03.22. Huang W D,Liao J J,Shen G Z.Lake change in past 40 years in the southern Nagqu District of Tibet and analysis of its driving forces[J].Remote Sensing for Land and Resources,2012,24(3):122-128.doi:10.6046/gtzyyg.2012.03.22.
[6] 曾光,高会军,朱刚.近32年塔里木盆地与准噶尔盆地湿地演化遥感分析[J].国土资源遥感,2013,25(3):118-123.doi:10.6046/gtzyyg.2013.03.20. Zeng G,Gao H J,Zhu G.Analysis of wetlands evolution process between Tarim Basin and Junggar Basin in the past 32 years[J].Remote Sensing for Land and Resources,2013,25(3):118-123.doi:10.6046/gtzyyg.2013.03.20.
[7] 李新国,江南,王红娟,等.近30年来太湖流域湖泊岸线形态动态变化[J].湖泊科学,2005,17(4):294-298. Li X G,Jiang N,Wang H J,et al.Dynamic changes of lake shorelines morphology in the Taihu Basin during the past 30 years[J].Journal of Lake Sciences,2005,17(4):294-298.
[8] 王红娟,姜加虎,李新国.岱海湖泊岸线形态变化研究[J].长江流域资源与环境,2006,15(5):674-677. Wang H J,Jiang J H,Li X G.Study on changes of lake shoreline morphology in Daihai Lake[J].Resources and Environment in the Yangtze Basin,2006,15(5):674-677.
[9] 潘文斌,黎道丰,唐涛,等.湖泊岸线分形特征及其生态学意义[J].生态学报,2003,23(12):2728-2735. Pan W B,Li D F,Tang T,et al.The fractal character of lake shoreline and its ecological implication[J].Acta Ecologica Sinica,2003,23(12):2728-2735.
[10] Moses S A,Janaki L,Joseph S,et al.Influence of lake morphology on water quality[J].Environmental Monitoring and Assessment,2011,182(1/4):443-454.
[11] Thierfelder T.The morphology of landscape elements as predictors of water quality in glacial/boreal lakes[J].Journal of Hydrology,1998,207(3/4):189-203.
[12] 陈云浩,冯通,史培军,等.基于面向对象和规则的遥感影像分类研究[J].武汉大学学报:信息科学版,2006,31(4):317-320. Chen Y H,Feng T,Shi P J,et al.Classification of remote sensing image based on object oriented and class rules[J].Geomatics and Information Science of Wuhan University,2006,31(4):317-320.
[13] 林川,宫兆宁,赵文吉.基于中分辨率TM数据的湿地水生植被提取[J].生态学报,2010,30(23):6460-6469. Lin C,Gong Z N,Zhao W J.The extraction of wetland hydrophytes types based on medium resolution TM data[J].Acta Ecologica Sinica,2010,30(23):6460-6469.
[14] 沈金祥,杨辽,陈曦,等.面向对象的山区湖泊信息自动提取方法[J].国土资源遥感,2012,24(3):84-91.doi:10.6046/gtzyyg.2012.03.16. Shen J X,Yang L,Chen X,et al.A method for object-oriented automatic extraction of lakes in the mountain area from remote sensing image[J].Remote Sensing for Land and Resources,2012,24(3):84-91.doi:10.6046/gtzyyg.2012.03.16.
[15] McFeeters S K.The use of normalized difference water index(NDWI) in the delineation of open water features[J].International Journal of Remote Sensing,1996,17(7):1425-1432.
[16] Jiang Z L,Qi J G,Su S L,et al.Water body delineation using index composition and HIS transformation[J].International Journal of Remote Sensing,2012,33(11):3402-3421.
[17] Xu H Q.Modification of normalized difference water index(NDWI)to enhance open water features in remotely sensed imagery[J].International Journal of Remote Sensing,2006,27(14):3025-3033.
[18] Verpoorter C,Kutser T,Tranvik L.Automated mapping of water bodies using Landsat multispectral data[J].Limnology and Oceanography:Methods,2012,10(12):1037-1050.
[19] Feyisa G L,Meilby H,Fensholt R,et al.Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J].Remote Sensing of Environment,2014,140:23-35.
[20] Sheng Y W,Shan C A,Smith L C.Automated image registration for hydrologic change detection in the lake-rich arctic[J].IEEE Geoscience and Remote Sensing Letters,2008,5(3):414-418.
[21] 宋开山,刘蕾,吕冬梅,等.基于Landsat-TM和MODIS的非洲水体分布格局研究[J].热带地理,2014,34(3):302-307. Song K S,Liu L,Lü D M,et al.Distribution pattern of African surface water based on Landsat-TM and MODIS imagery[J].Tropical Geography,2014,34(3):302-307.
[22] 刘蕾,臧淑英,那晓东,等.兼容光学雷达影像及地形辅助数据的扎龙湿地遥感分类[J].地理与地理信息科学,2013,29(1):36-40. Liu L,Zang S Y,Na X D,et al.Wetland mapping in the Zhalong natural reserve using optical and Radar remotely sensed data and ancillary topographical data[J].Geography and Geo-Information Science,2013,29(1):36-40.
[23] Stehman S V.Estimating the Kappa coefficient and its variance under stratified random Sampling[J].Photogrammetric Engineering and Remote Sensing,1999,62(4):401-407.
[24] 傅伯杰,陈利顶.景观多样性的类型及其生态意义[J].地理学报,1996,51(5):454-462. Fu B J,Chen L D.Landscape diversity types and their ecological significance[J].Acta Geographica Sinica,1996,51(5):454-462.
[25] 邬建国.景观生态学——格局、过程、尺度与等级[M].北京:高等教育出版社,2000. Wu J G.Landscape Ecology:Pattern,Process,Scale and Level[M].Beijing:Higher Education Press,2000.
[26] 王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998. Wang S M,Dou H S.The Lakes of China[M].Beijing:Science Press,1998.
[27] 马荣华,杨桂山,段洪涛,等.中国湖泊的数量、面积与空间分布[J].中国科学:地球科学,2011,41(3):394-401. Ma R H,Yang G S,Duan H T,et al.China's lakes at present:Number,area and spatial distribution[J].Science China Earth Sciences,2011,54(2):283-289.
[1] 胡盈盈, 戴声佩, 罗红霞, 李海亮, 李茂芬, 郑倩, 禹萱, 李宁. 2001—2015年海南岛橡胶林物候时空变化特征分析[J]. 自然资源遥感, 2022, 34(1): 210-217.
[2] 赵晓晨, 吴皓楠, 李林宜, 孟令奎. 面向汛旱情监测的遥感影像GPU并行处理算法[J]. 自然资源遥感, 2021, 33(3): 107-113.
[3] 魏浩翰, 许仁杰, 杨强, 周权平. 多源卫星测高数据监测太湖水位变化及影响分析[J]. 自然资源遥感, 2021, 33(3): 130-137.
[4] 张爱竹, 王伟, 郑雄伟, 姚延娟, 孙根云, 辛蕾, 王宁, 胡光. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3): 18-26.
[5] 韦耿, 侯钰俏, 查勇. 新冠疫情影响下武汉市气溶胶类型变化分析[J]. 自然资源遥感, 2021, 33(3): 238-245.
[6] 韦耿, 侯钰俏, 韩佳媚, 查勇. 基于精细模式气溶胶与WRF模式估算PM2.5质量浓度[J]. 国土资源遥感, 2021, 33(2): 66-74.
[7] 陈宝林, 张斌才, 吴静, 李纯斌, 常秀红. 历史平均值法用于MODIS影像像元云补偿——以甘肃省为例[J]. 国土资源遥感, 2021, 33(2): 85-92.
[8] 何海英, 陈彩芬, 陈富龙, 唐攀攀. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1): 205-213.
[9] 杨欢, 邓帆, 张佳华, 王雪婷, 马庆晓, 许诺. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 国土资源遥感, 2020, 32(3): 208-215.
[10] 邓刚, 唐志光, 李朝奎, 陈浩, 彭焕华, 王晓茹. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2): 177-185.
[11] 金楷仑, 郝璐. 基于遥感数据与SEBAL模型的江浙沪地区地表蒸散反演[J]. 国土资源遥感, 2020, 32(2): 204-212.
[12] 赵冰, 毛克彪, 蔡玉林, 孟祥金. 中国地表温度时空演变规律研究[J]. 国土资源遥感, 2020, 32(2): 233-240.
[13] 申振宇, 高小红, 汤敏. 高海拔复杂地形区SPOT6图像大气校正方法对比及精度验证[J]. 国土资源遥感, 2020, 32(1): 81-89.
[14] 程东亚, 李旭东. 大气校正前后山地流域NDVI变化特征对比[J]. 国土资源遥感, 2020, 32(1): 90-97.
[15] 施益强, 邓秋琴, 吴君, 王坚. 厦门市MODIS气溶胶光学厚度与空气质量指数的回归分析[J]. 国土资源遥感, 2020, 32(1): 106-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发