Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (2): 60-66    DOI: 10.6046/gtzyyg.2017.02.09
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于噪声白化的高光谱数据子空间维数算法
陈洁1, 2, 杜磊1, 李京1, 韩亚超1, 高子弘1
1.中国国土资源航空物探遥感中心,北京 100083;
2.中国科学院遥感与数字地球研究所,北京 100101
Hyperspectral data subspace dimension algorithm based on noise whitening
CHEN Jie1, 2, DU Lei1, LI Jing1, HAN Yachao1, GAO Zihong1
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
全文: PDF(1203 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 高光谱影像数据的相邻波段间相关性较强,信号与噪声共存,根据最小二乘原理,使观测数据与噪声的投影误差之和最小化的HySime (hyperspectral signal identification by minimum error)算法,通过数据观测值减去噪声估计值后得到信号的估计值,进而可以计算信号相关矩阵的估计值。该算法在准确估计噪声的情况下是可行的,但实际上经光谱降维去相关后得到的各像元噪声估计值往往并不准确,因此,原始的HySime算法得到的结果可能并不理想。提出一种基于噪声白化的HySime改进算法,它不必进行逐像元的噪声去除,而是先对原始数据进行噪声白化处理,然后准确获取噪声的协方差矩阵估计值,再利用HySime算法进行信号相关矩阵计算,实现了提高算法精度的目的。通过模拟和实验数据的验证,改进的算法结果更准确稳定,与经典的NSP (noise subspace projection)算法在不同情况下所得结果有很好的一致性,通过引入噪声白化的过程,提高了算法对非白噪声的适应性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马慧云
赵国庆
邹峥嵘
张伟康
关键词 反演物理参数影响因素    
Abstract:The correlation between adjacent bands of hyperspectral image data is relatively strong. However, signal coexists with noise. The HySime (hyperspectral signal identification by minimum error) algorithm which is based on the principle of least squares is designed to calculate the estimated noise value and the estimated signal correlation matrix value. The algorithm is effective with accurate noise value but ineffective with estimated noise value obtained from spectral dimension reduction and decorrelation process. This paper proposes an improved HySime algorithm based on noise whitening process. Instead of removing noise pixel by pixel, the algorithm carries out the noise whitening process on the original data first, obtains the noise covariance matrix estimated value accurately, and uses the HySime algorithm to calculate the signal correlation matrix value so as to improve the precision of the resultant value. Simulation and experiment have reached some conclusions: Firstly, the improved HySime algorithm is more accurate and stable than the original HySime algorithm; Secondly, the improved HySime algorithm results have better consistency under different conditions compared with the classic NSP (noise subspace the projection) algorithm; Finally, the improved HySime algorithm improves the adaptability of non-white data noise with the noise whitening process.
Key wordsfog    inversion    physical parameters    influencing factor
收稿日期: 2015-12-22      出版日期: 2017-05-03
基金资助:中国地质调查局地质调查项目“天山-北山重要成矿区带遥感调查”(编号: 121201003000150008)和“高光谱地质调查技术方法研究”(编号: 1212031513012)共同资助
作者简介: 陈 洁(1980-),男,高级工程师,主要从事航空摄影技术方法、数据处理及遥感地质应用的研究。Email: 6592296@qq.com。
引用本文:   
陈洁, 杜磊, 李京, 韩亚超, 高子弘. 基于噪声白化的高光谱数据子空间维数算法[J]. 国土资源遥感, 2017, 29(2): 60-66.
CHEN Jie, DU Lei, LI Jing, HAN Yachao, GAO Zihong. Hyperspectral data subspace dimension algorithm based on noise whitening. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 60-66.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.02.09      或      https://www.gtzyyg.com/CN/Y2017/V29/I2/60
[1] Green A A,Berman M,Switzer P,et al.A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J].IEEE Transactions on Geoscience and Remote Sensing,1988,26(1):65-74.
[2] Lee J B,Woodyatt A S,Berman M.Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(3):295-304.
[3] Chang C I,Du Q.Interference and noise-adjusted principal components analysis[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2387-2396.
[4] 张 兵,高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2011.
Zhang B,Gao L R.Hyperspectral Image Classification and Target Detection[M].Beijing:Science Press,2011.
[5] Roger R E.Principal components transform with simple, automatic noise adjustment[J].International Journal of Remote Sensing,1996,17(14):2719-2727.
[6] Roger R E,Arnold J F.Reliably estimating the noise in AVIRIS hyperspectral images[J].International Journal of Remote Sensing,1996,17(10):1951-1962.
[7] 洪 波.高光谱遥感图像信噪比估算方法研究[D].北京:中国科学院大学,2013.
Hong B.Study on Methods for SNR Estimation of Hyperspectral Remote Sensing Images[D].Beijing:University of Chinese Academy of Sciences,2013.
[8] 高连如.高光谱遥感目标探测中的信息增强与特征提取研究[D].北京:中国科学院遥感应用研究所,2007.
Gao L R.Research on Information Enhancement and Feature Extraction in Hyperspectral Remote Sensing Object Detection[D].Beijing:Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,2007.
[9] Chang C I,Du Q.Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(3):608-619.
[10] Bioucas-Dias J M,Nascimento J M P.Hyperspectral subspace identification[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(8):2435-2445.
[11] Eldar Y C,Oppenheim A V.MMSE whitening and subspace whitening[J].IEEE Transactions on Information Theory,2003,49(7):1846-1851.
[12] Cawse K,Robin A,Sears M.The effect of noise whitening on methods for determining the intrinsic dimension of a hyperspectral image[C]//Proceedings of the 3rd Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing.Lisbon,Portugal:IEEE Computer Society,2011.
[13] Nascimento J M P,Dias J M B.Vertex component analysis:A fast algorithm to unmix hyperspectral data[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):898-910.
[14] Chang C I,Du Q.Noise subspace projection approaches to determination of intrinsic dimensionality of hyperspectral imagery[C]//Proceedings of the SPIE 3871,Image and Signal Processing for Remote Sensing V.Florence,Italy:SPIE,1999:34-44.
[15] Swayze G,Clark R N,Kruse F,et al.Ground-truthing AVIRIS mineral mapping at Cuprite,Nevada[C]//Summaries of the Third Annual JPL Airborne Geoscience Workshop.Denver,CO:JPL Publication,1992:47-49.
[16] Swayze G A.The Hydrothermal and Structural History of the Cuprite Mining District,Southwestern Nevada:An Integrated Geological and Geophysical Approach[D].Boulder,Colorado:University of Colorado,1997.
[17] Chang C I,Xiong W,Liu W M,et al.Linear spectral mixture analysis based approaches to estimation of virtual dimensionality in hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(11):3960-3979.
[1] 孙一鸣, 张宝钢, 吴其重, 刘奥博, 高超, 牛静, 何平. 国产微景一号小卫星影像的城市裸地识别应用[J]. 自然资源遥感, 2022, 34(1): 189-197.
[2] 沙永莲, 王晓文, 刘国祥, 张瑞, 张波. 基于SBAS InSAR的新疆哈密砂墩子煤田开采沉陷监测与反演[J]. 自然资源遥感, 2021, 33(3): 194-201.
[3] 杜程, 李得林, 李根军, 杨雪松. 基于高原盐湖光谱特性下的溶解氧反演应用与探讨[J]. 自然资源遥感, 2021, 33(3): 246-252.
[4] 李力, 胡潇, 彭军. 基于暗通道先验的航拍图像去雾效果优化[J]. 国土资源遥感, 2021, 33(1): 108-114.
[5] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[6] 许赟, 许艾文. 基于随机森林的遥感影像云雪雾分类检测[J]. 国土资源遥感, 2021, 33(1): 96-101.
[7] 杨立娟. 基于两层随机森林模型估算中国东部沿海地区的PM2.5浓度[J]. 国土资源遥感, 2020, 32(4): 137-144.
[8] 石海岗, 梁春利, 张建永, 张春雷, 程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[9] 马振宇, 陈博伟, 庞勇, 廖声熙, 覃先林, 张怀清. 基于林火特征分类模型的森林火情等级制图[J]. 国土资源遥感, 2020, 32(1): 43-50.
[10] 杨崇, 刘国祥, 于冰, 张波, 张瑞, 王晓文. 基于InSAR形变的辽河油田曙光采油厂储层参数反演[J]. 国土资源遥感, 2020, 32(1): 209-215.
[11] 贺军亮, 韩超山, 韦锐, 周智勇, 东启亮. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019, 31(4): 96-103.
[12] 封红娥, 李家国, 朱云芳, 韩启金, 张宁, 田淑芳. GF-1与Landsat8水体叶绿素a浓度协同反演——以太湖为例[J]. 国土资源遥感, 2019, 31(4): 182-189.
[13] 左家旗, 王泽根, 边金虎, 李爱农, 雷光斌, 张正健. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019, 31(3): 20-28.
[14] 樊宪磊, 阎宏波, 瞿瑛. 基于HJ-1A/B CCD地表反照率估算方法比较与验证[J]. 国土资源遥感, 2019, 31(3): 123-131.
[15] 熊俊楠, 李伟, 程维明, 范春捆, 李进, 赵云亮. 高原地区LST空间分异特征及影响因素研究——以桑珠孜区为例[J]. 国土资源遥感, 2019, 31(2): 164-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发