Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (3): 157-165    DOI: 10.6046/gtzyyg.2019.03.20
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比
王大钊, 王思梦, 黄昌()
西北大学地表系统与环境承载力陕西省重点实验室,西安 710127
Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes
Dazhao WANG, Simeng WANG, Chang HUANG()
Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China
全文: PDF(14235 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用卫星影像快速准确地提取湖泊等地表水体范围一直是一个重要的研究课题,其对洪涝灾害监测、水资源管理与利用等具有重要意义。Sentinel-2 MSI和Landsat8 OLI数据是目前主流的开放获取的中高空间分辨率遥感影像。以鄱阳湖区为研究对象,首先,分别使用归一化差异水体指数(normalized difference water index,NDWI)、改进的归一化差异水体指数(modified normalized difference water index,MNDWI)、自动水体提取指数(automated water extraction index,AWEIsh)和基于线性判别分析的水体指数(water index,WI2015)等4种常用的水体指数从2种影像中提取湖泊水体的分布信息; 然后,分析了在同种水体指数之下2种影像提取结果的差异性和同一幅影像中4种水体指数提取结果的不同; 最后,利用同期的高分一号影像目视解译的结果对水体提取结果进行了精度验证。结果表明,对于2种遥感影像,4种水体指数均能成功地提取出研究区的大部分水体; AWEIsh和WI2015 的提取精度最高,在Sentinel-2和Landsat8影像上分别达到了98%和94%以上,MNDWI次之,NDWI的提取精度最低; 相对而言,Sentinel-2影像提取的水体细部信息更为明显,整体提取效果优于Landsat8影像。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王大钊
王思梦
黄昌
关键词 Sentinel-2Landsat8NDWIMNDWIAWEIshWI2015    
Abstract

Extracting surface water like lake water areas from satellite images quickly and accurately has been an important research topic, which is of great significance to the water disaster monitoring and water resource management. Sentinel-2 multi spectral imager (MSI) and Landsat8 operational land imager (OLI) data are two popular medium- to high- resolution data sources that are freely available. Using the Poyang Lake as the study area and employing four popular water indices, i.e., normalized difference water index (NDWI), modified normalized difference water index (MNDWI), automatic water extraction index (AWEIsh) and water index created with linear discriminant analysis (WI2015), the authors extracted water distribution from two types of images respectively. Water extraction results derived from different images and different water indices were analyzed. The accuracy of the water extraction results was evaluated by visual interpretation results of corresponding GF-1 images. The results reveal that, for these two remote sensing images, all water indices can detect most water body successfully. Among these indices, AWEIsh and WI2015 have relatively higher extraction accuracy, reaching 98% and 94% respectively on Sentinel-2 and Landsat8 images. Compared with Landsat8 images, Sentinel-2 images are capable of reflecting more detailed water body information, and the overall extraction accuracy is higher.

Key wordsSentinel-2    Landsat8    NDWI    MNDWI    AWEIsh    WI2015
收稿日期: 2018-08-03      出版日期: 2019-08-30
:  TP79  
基金资助:国家重点研发计划项目“山区暴雨洪水时空演变特征及山洪成灾暴雨阈值研究”(2017YFC1502501);国家自然科学基金项目“基于多时相遥感影像的亚像元级地表水变化检测研究”共同资助(41501460)
通讯作者: 黄昌
作者简介: 王大钊(1995-),男,硕士研究生,主要从事遥感技术应用研究。Email: 1597237873@qq.com.。
引用本文:   
王大钊, 王思梦, 黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J]. 国土资源遥感, 2019, 31(3): 157-165.
Dazhao WANG, Simeng WANG, Chang HUANG. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes. Remote Sensing for Land & Resources, 2019, 31(3): 157-165.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.03.20      或      https://www.gtzyyg.com/CN/Y2019/V31/I3/157
Fig.1  鄱阳湖Landsat8 B5(R),B4(G),B3(B)合成影像
(绿框为使用GF-1影像进行精度验证的区域)
Fig.2  Landsat8和Sentinel-2影像的6个对应波段的反射率对比
Fig.3  Landsat8和Sentinel-2的水体指数图像
Fig.4  Landsat8和sentinel-2使用阈值0得到的水体分布
Fig.5  Landsat8和Sentinel-2使用自定义阈值得到的水体分布
Fig.6  Landsat8与Sentinel-2的水体分布叠加结果
水体指数 L非水S非水 L水S水 L非水S水 L水S非水
NDWI 79.74 16.87 2.33 1.06
MNDWI 78.77 17.88 2.25 1.10
AWEIsh 75.45 20.52 2.73 1.30
WI2015 76.00 19.91 2.72 1.37
Tab.1  叠加图像各类像元所占百分比
Fig.7  Landsat8和Sentinel-2影像4种 指数得到的水体分布的叠加结果
影像 无指数探
测为水
1种指数
探测为水
2种指数
探测为水
3种指数
探测为水
4种指数
探测为水
Landsat8 76.62 0.85 1.84 2.10 18.60
Sentinel-2 78.18 0.54 1.93 1.82 17.53
Tab.2  Landsat8和Sentinel-2影像4种水体分布叠加后的像元统计
影像 水体指数 错分
率/%
漏分
率/%
总体精
度/%
Kappa
系数
Landsat8 NDWI 0.02 9.17 90.81 0.813 3
MNDWI 0.04 6.71 93.24 0.861 0
AWEIsh 0.36 5.13 94.52 0.886 2
WI2015 0.27 5.56 94.48 0.885 5
Sentinel-2 NDWI 0.08 5.68 94.24 0.880 9
MNDWI 0.07 3.19 96.74 0.931 7
AWEIsh 0.16 1.83 98.01 0.958 0
WI2015 0.14 1.80 98.06 0.959 1
Tab.3  基于Landsat8和Sentinel-2影像的4种水体指数水体提取结果精度指标
[1] Famiglietti J S, Rodell M . Water in the balance[J]. Science, 2013,340(6138):1300-1301.
[2] Du Y, Xue H P, Wu S J , et al. Lake area changes in the middle Yangtze region of China over the 20th century[J]. Journal of Environmental Management, 2011,92(4):1248-1255.
[3] Feng M, Sexton J O, Channan S , et al. A global,high-resolution (30-m) inland water body dataset for 2000:First results of a topo-graphic-spectral classification algorithm[J]. International Journal of Digital Earth, 2016,9(2):113-133.
[4] Liao A P, Chen L J, Chen J , et al. High-resolution remote sensing mapping of global land water[J]. Science China Earth Sciences, 2014,57(10):2305-2316.
[5] Carroll M L, Townshend J R, Dimiceli C M , et al. A new global raster water mask at 250 m resolution[J]. International Journal of Digital Earth, 2009,2(4):291-308.
[6] 刘桂林, 张落成, 刘剑 , 等. 基于Landsat TM影像的水体信息提取[J]. 中国科学院大学学报, 2013,30(5):644-650.
doi: 10.7523/j.issn.2095-6134.2013.05.011
Liu G L, Zhang L C, Liu J , et al. Water bodies information extraction based on Landsat TM remote sensing imagery[J]. Journal of University of Chinese Academy of Sciences, 2013,30(5):644-650.
[7] 胡兵, 杨敏华, 刘璇 . 基于LBV变换与多分辨率分析的水体提取研究[J]. 测绘地理信息, 2011,36(5):20-22.
Hu B, Yang M H, Liu X . Water body extracting based on LBV transformation and multi-resolution analysis[J]. Journal of Geomatics, 2011,36(5):20-22.
[8] 丁凤 . 基于新型水体指数(NWI)进行水体信息提取的实验研究[J]. 测绘科学, 2009,34(4):155-157.
Ding F . Study on information extraction of water body with a new water index (NWI)[J]. Science of Surveying and Mapping, 2009,34(4):155-157.
[9] 徐涵秋, 唐菲 . 新一代Landsat系列卫星:Landsat8遥感影像新增特征及其生态环境意义[J]. 生态学报, 2013,33(11):3249-3257.
doi: 10.5846/stxb201305030912
Xu H Q, Tang F . Analysis of new characteristics of the first Landsat8 image and their eco-environmental significance[J]. Acta Ecologica Sinica, 2013,33(11):3249-3257.
[10] Drusch M, Bello U D, Carlier S , et al. Sentinel-2:ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012,120(1):25-36.
[11] Lu S, Wu B, Yan N , et al. Water body mapping method with HJ-1A/B satellite imagery[J]. International Journal of Applied Earth Observations and Geoinformation, 2011,13(3):428-434.
[12] 杨莹, 阮仁宗 . 基于TM影像的平原湖泊水体信息提取的研究[J]. 遥感信息, 2010,3:60-64.
Yang Y, Ruan R Z . Extraction of plain lake water body based on TM imagery[J]. Remote Sensing Information, 2010,3:60-64.
[13] 殷青军, 杨英莲 . 基于EOS/MODIS数据的青海湖遥感监测[J]. 湖泊科学, 2005,17(4):356-360.
Yin Q J, Yang Y L . Remote sensing monitoring of Lake Qinghai based on EOS/MODIS data[J]. Journal of Lake Sciences, 2005,17(4):356-360.
[14] 张明华 . 用改进的谱间关系模型提取极高山地区水体信息[J]. 地理与地理信息科学, 2008,24(2):14-16,22.
Zhang M H . Extracting water-body information with improved medal of spectral relationship in a higher mountain area[J]. Geography and Geo-Information Science, 2008,24(2):14-16,22.
[15] 熊金国, 王世新, 周艺 . 不同指数模型提取ALOS AVNIR-2影像中水体的敏感性和精度分析[J]. 国土资源遥感, 2010,22(4):46-50.doi: 10.6046/gtzyyg.2010.04.10.
doi: 10.6046/gtzyyg.2010.04.10
Xiong J G, Wang S X, Zhou Y . A sensitivity analysis and accuracy assessment of different water extraction index models based on ALOS AVNIR-2 data[J]. Remote Sensing for Land and Resources, 2010,22(4):46-50.doi: 10.6046/gtzyyg.2010.04.10.
[16] 王秋燕, 陈仁喜, 徐佳 , 等. 环境一号卫星影像中水体信息提取方法研究[J]. 科学技术与工程, 2012,12(13):3051-3056.
Wang Q Y, Chen R X, Xu J , et al. Research on methods for extracting water body information from HJ-1A/B data[J]. Science Technology and Engineering, 2012,12(13):3051-3056.
[17] 李博, 周新志 . 基于MODIS数据的川西山区河道水体提取方法研究[J]. 地理与地理信息科学, 2009,25(2):59-62.
Li B, Zhou X Z . Research on extraction method of river water-body in mountain area of western Sichuan based on MODIS data[J]. Geography and Geo-Information Science, 2009,25(2):59-62.
[18] 曹荣龙, 李存军, 刘良云 , 等. 基于水体指数的密云水库面积提取及变化监测[J]. 测绘科学, 2008,33(2):158-160.
Cao R L, Li C J, Liu L Y , et al. Extracting Miyun reservoir’s water area and monitoring its change based on a revised normalized different water index, 2008,33(2):158-160.
[19] 陈杰 . 高分辨率遥感影像面向对象分类方法研究[D]. 中南大学, 2010.
Chen J . An Object-Oriented Classification Method for High Resolution Remote Sensing Imagery[D]. Changsha:Central South University, 2010.
[20] Shih S F . Comparison of ELAS classification and density slicing Landsat data for water-surface area assessment[J]. Hydrologic Applications of Space Technology, 1985,160:91-97.
[21] Barton I J, Bathols J M . Monitoring floods with AVHRR[J]. Remote Sensing of Environment, 1989,30(1):89-94.
[22] 陆家驹, 李士鸿 . TM资料水体识别技术的改进[J]. 遥感学报, 1992,1:17-23.
Lu J J, Li S H . Improvement of the techniques for distinguishing water bodies from TM data[J]. Journal of Remote Sensing, 1992,1:17-23.
[23] McFeeters S K . The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
[24] 徐涵秋 . 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.
doi: 10.3321/j.issn:1007-4619.2005.05.012
Xu H Q . A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005,9(5):589-595.
[25] Feyisa G L, Meilby H, Fensholt R , et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014,140(1):23-35.
[26] Danaher T, Collett L . Development,optimisation and multi-temporal application of a simple Landsat based water index [C]//The 13th Australasian Remote Sensing and Photogrammetry Conference.Canberra, 2006.
[27] Fisher A, Flood N, Danaher T . Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016,175:167-182.
[28] Xu H Q . Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033.
[29] Ji L, Zhang L, Wylie B . Analysis of dynamic thresholds for the normalized difference water index[J]. Photogrammetric Engineering and Remote Sensing, 2009,75(11), 1307-1317.
[30] Huang C, Chen Y, Zhang S , et al. Detecting,extracting,and monitoring surface water from space using optical sensors:A review[J]. Reviews of Geophysics, 2018,56:333-360.
[31] Liu Y, Song P, Peng J , et al. A physical explanation of the variation in threshold for delineating terrestrial water surfaces from multi-temporal images:Effects of radiometric correction[J]. International Journal of Remote Sensing, 2012,33(18):5862-5875.
[1] 刘春亭, 冯权泷, 金鼎坚, 史同广, 刘建涛, 朱明水. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3): 253-261.
[2] 赵怡, 许剑辉, 钟凯文, 王云鹏, 胡泓达, 吴萍昊. 基于Sentinel-2A和Landsat8的城市不透水面的提取[J]. 国土资源遥感, 2021, 33(2): 40-47.
[3] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[4] 王琳, 谢洪波, 文广超, 杨运航. 基于Landsat8的含蓝藻湖泊水体信息提取方法研究[J]. 国土资源遥感, 2020, 32(4): 130-136.
[5] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[6] 蔡耀通, 刘书彤, 林辉, 张猛. 基于多源遥感数据的CNN水稻提取研究[J]. 国土资源遥感, 2020, 32(4): 97-104.
[7] 石海岗, 梁春利, 张建永, 张春雷, 程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[8] 刘智丽, 张启斌, 岳德鹏, 郝玉光, 苏凯. 基于Sentinel-2A与NPP-VIIRS夜间灯光数据的城市建成区提取[J]. 国土资源遥感, 2019, 31(4): 227-234.
[9] 刘畅, 杨康, 程亮, 李满春, 郭紫燕. Landsat8不透水面遥感信息提取方法对比[J]. 国土资源遥感, 2019, 31(3): 148-156.
[10] 刘文雅, 邓孺孺, 梁业恒, 吴仪, 刘永明. 基于辐射传输模型的巢湖叶绿素a浓度反演[J]. 国土资源遥感, 2019, 31(2): 102-110.
[11] 熊俊楠, 李伟, 程维明, 范春捆, 李进, 赵云亮. 高原地区LST空间分异特征及影响因素研究——以桑珠孜区为例[J]. 国土资源遥感, 2019, 31(2): 164-171.
[12] 王月如, 韩鹏鹏, 关舒婧, 韩宇, 易琳, 周廷刚, 陈劲松. 基于Landsat8 OLI数据的富贵竹种植区域信息提取[J]. 国土资源遥感, 2019, 31(1): 133-140.
[13] 贾祎琳, 张文, 孟令奎. 面向GF-1影像的NDWI分割阈值选取方法研究[J]. 国土资源遥感, 2019, 31(1): 95-100.
[14] 孙桂芬, 覃先林, 刘树超, 李晓彤, 陈小中, 钟祥清. 典型植被指数识别火烧迹地潜力分析[J]. 国土资源遥感, 2019, 31(1): 204-211.
[15] 李静, 孙强强, 张平, 孙丹峰, 温礼, 李宪文. 基于多时相热红外遥感的钢铁企业生产状态辅助监测[J]. 国土资源遥感, 2019, 31(1): 220-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发