Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (1): 204-211    DOI: 10.6046/gtzyyg.2019.01.27
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
典型植被指数识别火烧迹地潜力分析
孙桂芬1, 覃先林1(), 刘树超1, 李晓彤1, 陈小中2, 钟祥清2
1.中国林业科学研究院资源信息研究所国家林业局林业遥感与信息技术实验室,北京 100091
2.四川省林业信息中心,成都 610081
Potential analysis of typical vegetation index for identifying burned area
Guifen SUN1, Xianlin QIN1(), Shuchao LIU1, Xiaotong LI1, Xiaozhong CHEN2, Xiangqing ZHONG2
1.Key Laboratory of Forestry Remote Sensing and Information Techniques, State Forestry Administration, Research Institute of Forest Resources Information Technique, Chinese Academy of Forestry, Beijing 100091, China
2.Forestry Information Center of Sichuan Province, Chengdu 610081, China
全文: PDF(4949 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

植被指数法是利用卫星遥感影像识别火烧迹地的常用方法之一。植被因受火的干扰会形成火烧迹地,其光谱特征易与裸地、水体、道路、阴影和耕地等地物光谱混淆,使用遥感影像采用合适的植被指数提高过火区遥感监测精度仍是亟待解决的问题。以四川省2014年和内蒙古自治区2017年发生的4次森林火灾形成的火烧迹地作为研究区,利用高分一号16 m宽幅(GF-1 WFV)数据和Landsat8数据的波谱特性,选取归一化植被指数(normalized difference vegetation index,NDVI)、增强型植被指数 (enhanced vegetation index,EVI)、全球环境监测植被指数(global environment monitoring index,GEMI)、过火区识别指数(burned area index,BAI)和归一化火烧指数(normalized burn ration,NBR)等5种典型植被指数,通过构建不同植被指数的分离指数M来定量评价这些植被指数识别火烧迹地的潜力。研究结果表明,基于近红外—短波红外波段的NBR和基于可见光—近红外波段的BAI对过火区的分离性较好,NDVI的分离性次之,EVI和GEMI的分离效果较差; 基于GF-1 WFV和Landsat8数据采用BAI和NBR指数对内蒙古鄂伦春自治旗火烧迹地进行了识别(其中GF-1 WFV数据只用于BAI识别),并利用高分二号(GF-2)数据进行了精度验证,两者火烧迹地识别总体精度均大于87%,Kappa系数均大于0.7。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙桂芬
覃先林
刘树超
李晓彤
陈小中
钟祥清
关键词 GF-1 WFV数据Landsat8数据火烧迹地植被指数分离性    
Abstract

Vegetation index is one of the commonly used method for adopting satellite remote sensing image to identify burned areas. Due to the disturbance of fire, vegetation becomes burned area, and its spectral characteristics are easily confused with the spectra of bare land, water body, road, shadow and arable land and some other factors. Therefore, the improvement of the accuracy of remote sensing monitoring for burned area using appropriate vegetation index remains an urgent problem. In this paper, four burned areas in Sichuan Province and Inner Mongolia where fire burning occurred in 2014 and 2017 were selected as the study areas. Based on the spectral characteristics of Gaofen-1 satellite 16 m wide width (GF-1 WFV) data and Landsat8 data, the authors chose normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), global environment monitoring index (GEMI), burned area index (BAI) and normalized burn ration (NBR) and constructed separation index M of different spectral indices to quantitatively evaluate the potential of different spectral indices for burned areas identification. The results show that NBR calculated with near-infrared and short-wave infrared band and BAI based on visible light-near infrared band have a better capability for separating burned areas, the separability of NDVI takes the second, whereas EVI and GEMI have a poor separability. For GF-1 WFV data and Landsat8 data, BAI and NBR which have a good separate capability for burned area identification were used for the burned area in Oroqen Autonomous Banner of Inner Mongolia to separate burned areas (for GF-1 WFV data, only BAI was used to identify burned area), and Gaofen-2 satellite (GF-2) data which have higher spatial resolution combined with confusion matrix method were used to verify the accuracy. The overall accuracy of both methods were higher than 87%, and the Kappa coefficients were all higher than 0.7.

Key wordsGF-1 WFV data    Landsat8 data    burned area    vegetation index    separability
收稿日期: 2017-11-06      出版日期: 2019-03-14
:  TP79  
基金资助:国防科工局重大专项项目"高分森林灾害监测应用示范(一期)"(21-Y30B05-9001-13/15);"机载光学全谱段数据处理及林火预警技术研究"(CAFYBB2018SZ009)
通讯作者: 覃先林
作者简介: 孙桂芬(1992-),女,硕士研究生,主要研究方向为光学遥感影像处理和森林火灾植被恢复遥感监测方法研究。Email: sunguifen12@163.com。
引用本文:   
孙桂芬, 覃先林, 刘树超, 李晓彤, 陈小中, 钟祥清. 典型植被指数识别火烧迹地潜力分析[J]. 国土资源遥感, 2019, 31(1): 204-211.
Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.01.27      或      https://www.gtzyyg.com/CN/Y2019/V31/I1/204
编号 研究区 火烧时间 火场中心经纬度 火场中心位置海拔/m 过火面积/hm2
1 陈巴尔虎旗火烧迹地 20170517 49°55'09"N,120°51'16"E 925 8 400
2 鄂伦春自治旗火烧迹地 20170502 49°30'32"N,123°06'02"E 500 11 500
3 雅江县火烧迹地 20140125 30°04'48"N,101°10'53"E 3 800 32
4 冕宁县火烧迹地 20140214 28°33'36"N,102°13'12"E 2 539 63
Tab.1  火烧迹地概况
研究区 GF-1WFV
获取时间
Landsat8
获取时间
GF-2
获取时间
陈巴尔虎旗火烧迹地 20170605 20170624
鄂伦春自治旗火烧迹地 20170605 20170509 20170613
雅江县火烧迹地 20170222 20140131
冕宁县火烧迹地 20140226 20140225
Tab.2  遥感数据获取情况
Fig.1  GF-1 WFV和Landsat8影像典型地物光谱曲线
Fig.2  技术流程
Fig.3  GF-1 WFV和Landsat8数据提取典型地物植被指数值
Fig.4  GF-1 WFV和Landsat8数据提取典型地物分离指数M
Fig.5  鄂伦春自治旗研究区遥感影像及识别结果
GF-1 Landsat8
评价指标 BAI NBR BAI
火烧区制图精度/% 78.95 61.84 72.45
未火烧区制图精度/% 96.59 96.92 94.55
火烧区用户精度/% 91.46 92.68 86.59
未火烧区用户精度/% 90.83 86.70 87.61
总体精度/% 91.00 88.33 87.33
Kappa系数 0.78 0.73 0.70
Tab.3  精度评价结果
[1] Dubinin M, Potapov P, Lushchekina A , et al. Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing[J]. Remote Sensing of Environment, 2010,114(8):1638-1648.
doi: 10.1016/j.rse.2010.02.010
[2] Key C H . Ecological and sampling constraints on defining landscape fire severity[J]. Fire Ecology, 2006,2(2):34-59.
doi: 10.4996/fireecology.0202034
[3] Roy D P, Jin Y, Lewis P E , et al. Prototyping a global alforithm for systematic fire-affected area mapping using MODIS time series data[J]. Remote Sensing of Environment, 2005,97(2):137-162.
doi: 10.1016/j.rse.2005.04.007
[4] Veraverbeke S, Harris S, Hook S . Evaluating spectral indices for burned area discrimination using MODIS/ASTER(MASTER) airborne simulator data[J]. Remote sensing of Environment, 2011,115(10):2702-2709.
doi: 10.1016/j.rse.2011.06.010
[5] Carriello F, Anderson L O, Adami M. Multitemporal analysis of the spectral response of scars of burnt area using the Landsat/ETM sensor[C]// IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Barcelona:IEEE, 2007.
[6] Chuvieco E, Martín M P, Palacios A . Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination[J]. International Journal of Remote Sensing, 2002,23(23):5103-5110.
doi: 10.1080/01431160210153129
[7] 朱曦, 覃先林 . 基于二阶段算法的HJ-CCD数据过火区制图[J]. 遥感技术与应用, 2013,28(1):72-77.
doi: 10.11873/j.issn.1004-0323.2013.1.72
Zhu X, Qin X L . Burned area mapping using HJ-1A/B CCD data based on two-phase algorithm[J]. Remote Sensing Technology and Application, 2013,28(1):72-77.
[8] Huete A, Didan K, Miura T , et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002,83(1):195-213.
doi: 10.1016/S0034-4257(02)00096-2
[9] Pinty B, Verstraete M M . GEMI:A nonlinear index to monitor global vegetation from satellites[J]. Vegetatio, 1992,101(1):15-20.
doi: 10.1007/BF00031911
[10] Loboda T, O’neal K J, Csiszar I . Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data[J]. Remote Sensing of Environment, 2007,109(4):429-442.
doi: 10.1016/j.rse.2007.01.017
[11] López García M J L, Caselles V . Mapping burns and natural reforestation using thematic mapper data[J]. Geocarto International, 1991,6(1):31-37.
doi: 10.1080/10106049109354290
[12] Bastarrika A, Chuvieco E, Martin M P . Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm:Balancing omission and commission errors[J]. Remote Sensing of Environment, 2011,115(4):1003-1012.
doi: 10.1016/j.rse.2010.12.005
[13] 覃先林 . 林火卫星遥感监测[M]. 北京: 中国林业出版社, 2016: 10-12.
Qin X L. Forest Fire Monitoring Using Satellite Remote Sensing[M]. Beijing: China Forestry Publishing House, 2016: 10-12.
[14] Wulder M A, White J C, Alvarez F , et al. Characterizing boreal forest wildfire with multi-temporal Landsat and LiDAR data[J]. Remote Sensing of Environment, 2009,113(7):1540-1555.
doi: 10.1016/j.rse.2009.03.004
[15] Kennedy R E, Yang Z Q, Cohen W B . Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr-Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010,114(12):2897-2910.
doi: 10.1016/j.rse.2010.07.008
[16] Cohen W B, Yang Z Q, Kennedy R . Detecting trends in forest disturbance and recovery using yearly Landsat time series:2.TimeSync-Tools for calibration and validation[J]. Remote Sensing of Environment, 2010,114(12):2911-2924.
doi: 10.1016/j.rse.2010.07.010
[17] Kaufman Y J, Remer L A . Detection of forests using mid-IR reflectance:An application for aerosol studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(3):672-683.
doi: 10.1109/36.297984
[18] Lasaponara R . Estimating spectral separability of satellite derived parameters for burned areas mapping in the Calabria region by using SPOT-Vegetation data[J]. Ecological Modelling, 2006,196(1-2):265-270.
doi: 10.1016/j.ecolmodel.2006.02.025
[19] Smith A M S, Drake N A, Wooster M J , et al. Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs:Comparison of methods and application to MODIS[J]. International Journal of Remote Sensing, 2007,28(12):2753-2775.
doi: 10.1080/01431160600954704
[20] Gitas I Z, Devereux B J . The role of topographic correction in mapping recently burned Mediterranean forest areas from Landsat TM images[J]. International Journal of Remote Sensing, 2006,27(1):41-54.
doi: 10.1080/01431160500182992
[1] 姚金玺, 张志, 张焜. 基于GEE的诺木洪洪积扇植被时空变化特征、成因及趋势分析[J]. 自然资源遥感, 2022, 34(1): 249-256.
[2] 李阳, 袁琳, 赵志远, 张晋磊, 王宪业, 张利权. 基于无人机低空遥感和现场调查的潮滩地形反演研究[J]. 自然资源遥感, 2021, 33(3): 80-88.
[3] 宋承运, 胡光成, 王艳丽, 汤超. 基于表观热惯量与温度植被指数的FY-3B土壤水分降尺度研究[J]. 国土资源遥感, 2021, 33(2): 20-26.
[4] 胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
[5] 吴霞, 王长军, 樊丽琴, 李磊. 基于多光谱遥感的盐渍化评价指数对宁夏银北灌区土壤盐度预测的适用性分析[J]. 国土资源遥感, 2021, 33(2): 124-133.
[6] 王川, 范景辉, 林思美, 饶月明, 黄华国. 光学遥感植被指数与SAR遥感参数的相关性及其主要影响因素研究[J]. 国土资源遥感, 2020, 32(2): 130-137.
[7] 王懿哲, 刘国, 郭莉, 赵世湖, 张学利. 基于高分一号WFV数据的正射校正与真彩色合成技术——以中巴经济走廊为例[J]. 国土资源遥感, 2020, 32(2): 213-218.
[8] 马超, 蔡盼丽. 徂徕山—莲花山地区环境生态指数时空变化与驱动因素分析[J]. 国土资源遥感, 2019, 31(4): 199-208.
[9] 李晓彤, 覃先林, 刘树超, 孙桂芬, 刘倩. 基于GF-1 WFV数据森林叶面积指数估算[J]. 国土资源遥感, 2019, 31(3): 80-86.
[10] 柴国奇, 王静璞, 王光镇, 韩柳, 王周龙. 基于MODIS数据的典型草原非光合植被覆盖度估算[J]. 国土资源遥感, 2019, 31(3): 234-241.
[11] 董立新. 三峡库区森林叶面积指数多模型遥感估算[J]. 国土资源遥感, 2019, 31(2): 73-81.
[12] 许剑辉, 赵怡, 肖明虹, 钟凯文, 阮惠华. 基于空间自回归模型的广州市NDVI和NDBI与气温关系研究[J]. 国土资源遥感, 2018, 30(2): 186-194.
[13] 陆坤, 孟庆岩, 孙云晓, 孙震辉, 张琳琳. 基于GF-2卫星数据的孕穗期小麦叶面积指数反演——以河北省廊坊市为例[J]. 国土资源遥感, 2018, 30(1): 196-202.
[14] 宋扬, 房世波, 梁瀚月, 柯丽娜. 基于MODIS数据的农业干旱遥感指数对比和应用[J]. 国土资源遥感, 2017, 29(2): 215-220.
[15] 陶婷, 阮仁宗, 岁秀珍, 王玉强, 林鹏. 基于HyMap数据的浮水植被信息提取[J]. 国土资源遥感, 2017, 29(2): 187-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发