Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (3): 72-79    DOI: 10.6046/zrzyyg.2020334
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
月尺度农作物提取中GF-1 WFV纹理特征的应用及分析
王镕1(), 赵红莉1(), 蒋云钟1, 何毅2, 段浩1
1.中国水利水电科学研究院,北京 100038
2.兰州交通大学测绘与地理信息学院,兰州 730070
Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops
WANG Rong1(), ZHAO Hongli1(), JIANG Yunzhong1, HE Yi2, DUAN Hao1
1. Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
2. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
全文: PDF(6005 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

农作物种植结构包含农作物种类、数量结构和空间分布特征等信息,是农业科学管理的基础。在不考虑农作物时间序列最佳窗口期的前提下,以石津灌区为研究区,基于高分一号(GF-1)WFV影像计算并分析纹理特征在农作物分类识别中的能力。并在纹理特征分类效果相对较差的时相内引入植被指数,从而弥补纹理在农作物表达上的缺陷。经过对比各组分类结果,可以发现: 在作物结构明显的4,8月份,单独纹理特征的分类精度可以达到80%以上,但是在5,6,7,9月等农作物最复杂的时间段内,分类精度仍低于80%。将植被指数与纹理特征组合后,这4个月份的分类结果有了很大改善,总体分类精度均大于80%,基本满足农业动态监测的需求; 与单独纹理相比,精度提高2.27%~9.75%, Kappa系数提高0.02~0.16; 利用夏玉米的验证样本进行验证,识别精度可以达到98%,识别效果相对完整,破碎程度达到最小化,与其他类别区分度也达到了最优。同时也证明了GF-1WFV纹理特征在农作物种植结构提取中的可用性,尤其是在作物结构相对明显的月份内,可以为影像的农作物提取提供一些有效的信息。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王镕
赵红莉
蒋云钟
何毅
段浩
关键词 GF-1 WFV种植结构分类纹理特征精度    
Abstract

The crop planting structure consists of information such as crop species, quantity structure, and spatial distribution characteristics, and it serves as the basis for agricultural scientific management. Taking the Shijin irrigation area, Hebei Province as the study area and on the premise of not considering the optimal window period of crop time series, this study calculates and analyzes the ability of texture features in crop classification and identification based on GF-1WFV images. Meanwhile, the vegetation index is introduced into the time phase in which the classification effects based on texture features are poor, in order to make up for the defects of texture in the expression of crops. According to the comparison of the classification results of various groups, the classification accuracy of individual texture features reached greater than 80% in April and August when the crop structure is obvious but was still less than 80% in May, June, July, and September when crops are the most complex. After combining the texture features with the vegetation index, the classification results of the crops in these four months were greatly improved. In detail, the overall classification accuracy was greater than 80%, which basically meets the need for agricultural dynamic monitoring. Meanwhile, the accuracy was improved by 2.27%~9.75 % and the Kappa coefficient was increased by 0.02~0.16 compared to the individual texture features. As verified using summer maize samples, the recognition accuracy reached up to 98%, the recognition effects were relatively complete, the fragmentation degree was the minimum, and the optimal discrimination from other crop categories was achieved. Meanwhile, it also proved that the texture features based on GF-1WFV images can be applied to the extraction of the crop planting structure, especially in the months when the crop structure is relatively obvious, and they can provide some effective information for the information extraction of crops base on images.

Key wordsGF-1 WFV    crop planting structure    classification    texture    accuracy
收稿日期: 2020-10-21      出版日期: 2021-09-24
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“国家水资源动态评价关键技术与应用”(2018YFC0407705);国家重点研发计划项目“国家水资源立体监测体系与遥感技术应用”(2017YFC0405800)
通讯作者: 赵红莉
作者简介: 王 镕(1993-)女,硕士,主要研究方向为农业与水资源遥感应用。Email: 942437026@qq.com
引用本文:   
王镕, 赵红莉, 蒋云钟, 何毅, 段浩. 月尺度农作物提取中GF-1 WFV纹理特征的应用及分析[J]. 自然资源遥感, 2021, 33(3): 72-79.
WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020334      或      https://www.gtzyyg.com/CN/Y2021/V33/I3/72
Fig.1  研究区位置示意图
Fig.2  研究区样本点分布示意图
统计量 计算公式
Mean(平均值) - i = 0 L - 1 i = 0 L - 1i×p(i,j)
Var(方差) i = 0 L - 1 i = 0 L - 1(i-μ)2×p(i,j)
Con(对比度) i = 0 L - 1n i = 0 L - 1 i = 0 L - 1 i × p ( i , j )
Hom(同质性) i = 0 L - 1 i = 0 L - 1 p ( i , j ) 1 + ( i - j ) 2
Dis (非相似性) i = 0 L - 1 i = 0 L - 1 i - j×p(i,j)
Ent(信息熵) - i = 0 L i = 0 Lp(i,j)×lgp(i,j)
ASM(二阶矩) i = 0 L i = 0 L ( p ( i , j ) ) 2
Cor(相关性) i = 0 L i = 0 L ( ij ) p ( i , j ) - u i u j s i s j
Tab.1  纹理特征量
日期 冬小麦 棉花 蔬菜 夏玉米 经济园林
4月18 1 675.3 90.9 687.1
5月4 1 696.9 88.9 508 689.1
6月30 90.4 562 755.8
7月21 105 521 1 785 658.1
8月28 101 558 1 798 692.1
9月24 129 648 1 830 742.5
Tab.2  纹理特征分类结果统计
Fig.3  基于纹理特征的农作物分类结果
日期 冬小麦 棉花 蔬菜 夏玉米 经济园林
4月18 日 1 828.1 89.3 477.4
5月4日 1 853.7 83.4 603.4 532.4
6月30日 94.9 668.5 649.1
7月21日 104 626.7 1 741 643.2
8月28日 109 713.2 1 774 590.2
9月24日 102 746.1 1 713 601.6
Tab.3  组合后分类结果统计
日期 纹理特征 特征组合
精度/% Kappa 精度/% Kappa
4月18日 92.95 0.91 95.22 0.93
5月4日 81.29 0.74 85.24 0.79
6月30日 70.54 0.59 80.29 0.75
7月21日 78.69 0.71 81.24 0.73
8月28日 83.69 0.81 87.05 0.81
9月24日 82.91 0.79 86.39 0.80
Tab.4  分类精度评价表
Fig.4  两组实验分类结果对比图
[1] Yi Z Y, Zhao H L, Jiang Y Z, et al. Daily evapotranspiration estimation at the field scale:Using the modified SEBS model and HJ-1 data in a desert-oasis area,northwestern China[J]. Water, 2018, 10(5):640.
doi: 10.3390/w10050640
[2] 张健康, 程彦培, 张发旺. 基于多时相遥感影像的作物种植信息提取[J]. 农业工程学报, 2012, 28(2):134-141.
Zhang J K, Cheng Y P, Zhang F W. Crop planting information extraction based on multi-temporal remote sensing images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(2):134-141.
[3] 马丽, 徐新刚, 贾建华, 等. 利用多时相TM影像进行作物分类方法[J]. 农业工程学报, 2008, 24(s2):191-195.
Ma L, Xu X G, Jia J H, et al. Crop classification method using multi-temporal TM images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(s2):191-195.
[4] 熊元康, 张清凌. 基于NDVI时间序列影像的天山北坡经济带农业种植结构提取[J]. 干旱区地理, 2019, 42(5):1105-1114.
Xiong Y K, Zhang Q L. Extraction of agricultural planting structure based on NDVI time series images in the economic zone of the northern slope of the Tianshan Mountains[J]. Arid Land Geography, 2019, 42(5):1105-1114.
[5] 赵丽花, 李卫国, 杜培军. 基于多时相HJ卫星的冬小麦面积提取[J]. 遥感信息, 2011(2):41-45,50.
Zhao L H, Li W G, Du P J. Winter wheat area extraction based on multi-temporal HJ satellites[J]. Remote Sensing Information, 2011(2):41-45,50.
[6] 潘耀忠, 李乐, 张锦水, 等. 基于典型物候特征的MODIS-EVI时间序列数据农作物种植面积提取方法——小区域冬小麦实验研究[J]. 遥感学报, 2011, 15(3):578-594.
Pan Y Z, Li L, Zhang J S, et al. Extraction method of crop planting area from MODIS-EVI time series data based on typical phenological characteristics:Experimental study on small area winter wheat[J]. Journal of Remote Sensing, 2011, 15(3):578-594.
[7] 侯学会, 牛铮, 高帅, 等. 基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测[J]. 农业工程学报, 2013, 29(1):142-150,294.
Hou X H, Niu Z, Gao S, et al. Vegetation phenology monitoring in the agro-pastoral ecotone based on SPOT-VGT NDVI time series[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1):142-150,294.
[8] Dekker R J. Texture analysis and classification of ERS SAR images for map updating of urban areas in The Netherlands[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(9):1950-1958.
[9] 赵凌君, 秦玉亮, 高贵, 等. 利用GLCM纹理分析的高分辨率SAR图像建筑区检测[J]. 遥感学报, 2009, 13(3):483-490.
Zhao L J, Qin Y L, Gao G, et al. High-resolution SAR image building area detection using GLCM texture analysis[J]. Journal of Remote Sensing, 2009, 13(3):483-490.
[10] 黄健熙, 侯矞焯, 等. 基于GF-1 WFV数据的玉米与大豆种植面积提取方法[J]. 农业工程学报, 2017, 33(7):164-170.
Huang J X, Hou J Z, et al. Extraction method of corn and soybean planting area based on GF-1 WFV data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(7):164-170.
[11] 王利民, 刘佳, 杨福刚, 等. 基于GF-1卫星遥感数据识别京津冀冬小麦面积[J]. 作物学报, 2018, 44(5):762-773.
Wang L M, Liu J, Yang F G, et al. Recognizing the area of winter wheat in Beijing-Tianjin-Hebei based on GF-1 remote sensing data[J]. Acta Agronomica Sinica, 2018, 44(5):762-773.
doi: 10.3724/SP.J.1006.2018.00762
[12] 刘国栋, 邬明权, 牛铮, 等. 基于GF-1卫星数据的农作物种植面积遥感抽样调查方法[J]. 农业工程学报, 2015, 31(5):160-166.
Liu G D, Wu M Q, Niu Z, et al. Remote sensing sampling survey method of crop planting area based on GF-1 satellite data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):160-166.
[13] 欧阳玲, 毛德华, 王宗明, 等. 基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析[J]. 农业工程学报, 2017, 33(11):147-156,316.
Ou Y L, Mao D H, Wang Z M, et al. Analysis crops planting structure and yield based on GF-1 and Landsat8 OLI images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11):147-156,316.
[14] 程乾, 陈金凤. 基于高分1号杭州湾南岸滨海陆地土地覆盖信息提取方法研究[J]. 自然资源学报, 2015, 30(2):350-360.
Cheng Q, Chen J F. Research on the extraction method of land cover information based on the coastal land on the south coast of Hangzhou Bay of GF-1[J]. Journal of Natural Resources, 2015, 30(2):350-360.
[15] 李恒凯, 吴娇, 王秀丽. 基于GF-1影像的东江流域面向对象土地利用分类[J]. 农业工程学报, 2018, 34(10):245-252.
Li H K, Wu J, Wang X L. Object-oriented land use classification of Dongjiang basin based on GF-1 image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(10):245-252.
[16] 王镕. 基于光谱和纹理特征综合的农作物种植结构提取方法研究[D]. 兰州:兰州交通大学, 2019.
Wang R. Research on the extraction method of crop planting structure based on the integration of spectrum and texture features[D]. Lanzhou:Lanzhou Jiaotong University, 2019.
[17] 权文婷, 王钊. 冬小麦种植面积遥感提取方法研究[J]. 国土资源遥感, 2013, 25(4):8-15.doi: 10.6046/gtzyyg.2013.04.02.
doi: 10.6046/gtzyyg.2013.04.02
Quan W T, Wang Z. Research on remote sensing extraction method of winter wheat planting area[J]. Remote Sensing for Land and Resources, 2013, 25(4):8-15.doi: 10.6046/gtzyyg.2013.04.02.
doi: 10.6046/gtzyyg.2013.04.02
[18] 王利民, 刘佳, 姚保民. 基于GF-1影像NDVI年度间相关分析的冬小麦面积变化监测[J]. 农业工程学报, 2018, 34(8):184-191.
Wang L M, Liu J, Yao B M. Monitoring of winter wheat area change based on inter-annual correlation analysis of GF-1 image NDVI[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8):184-191.
[19] 杨闫君, 占玉林, 田庆久. 基于GF-1/WFVNDVI时间序列数据的作物分类[J]. 农业工程学报, 2015, 31(24):155-161.
Yang Y J, Zhan Y L, Tian Q J. Crop classification based on GF-1/WFVNDVI time series data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24):155-161.
[20] Peleg S. Multiple Resolution Texture Analysis and Classification[J]. IEEE Trans.PAMI, 2009, 6(4):518-523.
[21] 郑淑丹, 郑江华, 石明辉. 基于分形和灰度共生矩阵纹理特征的种植型药用植物遥感分类[J]. 遥感学报, 2014, 18(4):868-886.
Zheng S D, Zheng J H, Shi M H. Remote sensing classification of planted medicinal plants based on fractal and gray-level symbiotic matrix texture features[J]. Journal of Remote Sensing, 2014, 18(4):868-886.
[22] 宋荣杰, 宁纪锋, 常庆瑞. 基于小波纹理和随机森林的猕猴桃果园遥感提取[J]. 农业机械学报, 2018, 49(4):222-231.
Song R J, Ning J F, Chang Q R. Remote sensing extraction of kiwifruit orchard based on wavelet texture and random forest[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(4):222-231.
[23] 张超, 金虹杉, 刘哲. 基于GF遥感数据纹理分析识别制种玉米[J]. 农业工程学报, 2016, 32(21):183-188.
Zhang C, Jin H S, Liu Z. Recognition of seed production corn based on texture analysis of GF remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(21):183-188.
[24] 王镕, 赵红莉, 郝震, 等. 一种农作物种植结构月尺度动态提取方法:中国, CN110321861A[P]. 2019-10-11.
Wang R, Zhao H L, Hao Z, et al. A dynamic extraction method of crop planting structure on a monthly scale:China, CN110321861A[P]. 2019-10-11.
[25] 王镕, 赵红莉, 郝震, 等. 纹理特征优选的农作物种植结构月尺度动态提取方法:中国, CN110909652A[P]. 2020-03-24.
Wang R, Zhao H L, Hao Z, et al. The monthly-scale dynamic extraction method of crop planting structure for texture feature optimization:China,CN110909652A[P]. 2020-03-24.
[26] 贾坤, 李强子. 农作物遥感分类特征变量选择研究现状与展望[J]. 资源科学, 2013, 35(12):2507-2516.
Jia K, Li Q Z. Current status and prospects of research on selection of feature variables for crop remote sensing classification[J]. Resources Science, 2013, 35(12):2507-2516.
[27] 王娜, 李强子, 杜鑫. 单变量特征选择的苏北地区主要农作物遥感识别[J]. 遥感学报, 2017, 21(4):519-530.
Wang N, Li Q Z, Du X. Remote sensing identification of main crops in northern Jiangsu based on univariate feature selection[J]. Journal of Remote Sensing, 2017, 21(4):519-530.
[28] 刘晓双, 龚直文, 吴见. 基于多特征的高光谱遥感土地利用信息提取[J]. 南京林业大学学报(自然科学版), 2018, 42(4):141-147.
Liu X S, Gong Z W, Wu J. Multi-feature-based hyperspectral remote sensing land use information extraction[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(4):141-147.
[29] 单治彬, 孔金玲. 面向对象的特色农作物种植遥感调查方法研究[J]. 地球信息科学学报, 2018, 20(10):1509-1519.
doi: 10.12082/dqxxkx.2018.180116
Shan Z B, Kong J L. Research on object-oriented remote sensing survey method of characteristic crop cultivation[J]. Journal of Geo-Information Science, 2018, 20(10):1509-1519.
[1] 娄燕寒, 廖静娟, 陈嘉明. Sentinel-3A卫星测高数据监测长江中下游河流水位变化[J]. 自然资源遥感, 2023, 35(3): 221-229.
[2] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[3] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[4] 熊东阳, 张林, 李国庆. 基于最大熵模型的遥感土地利用多分类研究[J]. 自然资源遥感, 2023, 35(2): 140-148.
[5] 蒋毅, 马克委, 王云凯, 杨红军, 何燕兰. 自然资源综合调查监测“一查多用”分类体系研究[J]. 自然资源遥感, 2023, 35(2): 264-270.
[6] 闫涵, 张毅. 利用GF-6影像结合国土“三调”开展西部地区县域自然资源调查[J]. 自然资源遥感, 2023, 35(2): 277-286.
[7] 石敏, 李慧颖, 贾明明. 基于GEE云平台与Landsat数据的山口自然保护区红树林时空变化分析[J]. 自然资源遥感, 2023, 35(2): 61-69.
[8] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[9] 吴玉鑫, 王卷乐, 韩保民, 严欣荣. 基于时空谱特征的墨脱县森林分类方法与实现[J]. 自然资源遥感, 2023, 35(1): 180-188.
[10] 孙盛, 蒙芝敏, 胡忠文, 余旭. 多尺度轻量化CNN在SAR图像地物分类中的应用[J]. 自然资源遥感, 2023, 35(1): 27-34.
[11] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[12] 秦乐, 何鹏, 马玉忠, 刘建强, 杨彬. 基于时空谱特征的遥感影像时间序列变化检测[J]. 自然资源遥感, 2022, 34(4): 105-112.
[13] 李星佑, 张飞, 王筝. 土壤盐渍化遥感监测模型构建方法现状与发展趋势[J]. 自然资源遥感, 2022, 34(4): 11-21.
[14] 王宇, 周忠发, 王玲玉, 骆剑承, 黄登红, 张文辉. 基于Sentinel-1的喀斯特高原山区种植结构空间分异研究[J]. 自然资源遥感, 2022, 34(4): 155-165.
[15] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发