Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 143-152    DOI: 10.6046/zrzyyg.2020378
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
模型集群分析策略联合ELM的土壤重金属Pb含量预测
肖烨辉1(), 宋妮迪2, 孟盼盼2, 王培俊2, 范胜龙2()
1.福建农林大学资源与环境学院,福州 350007
2.福建农林大学公共与管理学院,福州 350007
Prediction of lead content in soil based on model population analysis coupled with ELM algorithm
XIAO Yehui1(), SONG Nidi2, MENG Panpan2, WANG Peijun2, FAN Shenglong2()
1. College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350007, China
2. College of Public Management, Fujian Agriculture and Forestry University, Fuzhou 350007, China
全文: PDF(4806 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为探寻区域土壤重金属含量最佳反演模型,以龙海市为研究区,对土壤原始光谱数据分别进行SG平滑、小波变换、高斯滤波和多元散射校正4种光谱预处理,运用基于模型集群分析(model population analysis,MPA)策略开发的波长选择算法: 竞争适应性重加权采样算法(competitive adaptive reweighted sampling,CARS)、变量空间迭代收缩算法(variable iterative space shrinkage approach,VISSA)、迭代变量子集优化算法(iteratively variable subset optimization,IVSO)和区间组合优化算法(interval combination optimization,ICO)剔除干扰与无信息波长变量,采用线性模型偏最小二乘回归(partial least squares regression,PLSR)、非线性模型支持向量机(support vector machine,SVM)及神经网络模型极限学习机(extreme learning machine,ELM)进行土壤重金属铅(Pb)含量回归预测。结果表明: 经过多种预处理方法建立的Pb含量反演模型中,基于小波变换第七层重构后的光谱数据构建的模型预测精度最优,其验证集R2=0.736,RMSE=5.426,RPD=1.976,RPIQ=2.560。基于MPA策略开发的CARS,VISSA,IVSO和ICO都能显著提升模型解释性与泛化性能,并且提高建模效率。3种回归模型总体的预测表现排序: ELM>PLSR>SVM。其中ICO-ELM预测精度最高,其验证集R2=0.863,RMSE=3.953,RPD=2.712,RPIQ=3.514。所建最优模型可为区域土地质量和生态指标快速准确监测提供新的理论参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖烨辉
宋妮迪
孟盼盼
王培俊
范胜龙
关键词 模型集群分析策略小波变换区间组合优化极限学习机    
Abstract

This paper aims to explore the optimal inversion model of regional heavy metal content in soil. With Longhai City taken as the study area, this study preprocessed the original spectral data of soil using the methods of Savizky Golay (SG), wavelet transform (WT), gaussian filter (GF), and multiple scatter correction (MSC) individually, then eliminated the interference and wavelength bearing no information using the wavelength selection algorithms developed based on model population analysis (MPA), including the competitive adaptive reweighted sampling (CARS), variable iterative space shrinkage approach (VISSA), iteratively variable subset optimization (IVSO), and interval combination optimization (ICO), and finally predicted the lead content in soil using the linear partial least squares regression (PLSR) model, nonlinear support vector machine (SVM) model, and extreme learning machine (ELM) based on neural network. The results are as follows. ① Among the inversion models of lead content in soil established using various preprocessing methods, the model built based on reconstructed spectral data of level 7th by wavelet transform had the most optimal prediction accuracy, with R2=0.736, RMSE=5.426, RPD=1.976, and RPIQ=2.560. ② The CARS, VISSA, IVSO, and ICO algorithms developed based on MPA significantly improved the performance of model interpretation and generalization and improved modeling efficiency. ③ In terms of overall prediction results, the three regression models were in the order of ELM>PLSR>SVM. Among them, the ICO-ELM had the highest prediction accuracy, with R2=0.863, RMSE=3.953, RPD=2.712,and RPIQ=3.514. Therefore, the optimal model established in this study can provide a new theoretical reference for the rapid monitoring of regional land quality and ecological indicators.

Key wordsmodel population analysis    wavelet transform    interval combination optimization    extreme learning machine
收稿日期: 2020-12-01      出版日期: 2021-12-23
ZTFLH:  TP79  
基金资助:福建省自然科学基金面上项目“生物炭和脱硫石膏改良滨海滩涂新围垦耕地的耦合效应及其机制”(2019J01397)
通讯作者: 范胜龙
作者简介: 肖烨辉(1997-),男,硕士,主要研究方向为农业环境保护。Email: 260939662@qq.com
引用本文:   
肖烨辉, 宋妮迪, 孟盼盼, 王培俊, 范胜龙. 模型集群分析策略联合ELM的土壤重金属Pb含量预测[J]. 自然资源遥感, 2021, 33(4): 143-152.
XIAO Yehui, SONG Nidi, MENG Panpan, WANG Peijun, FAN Shenglong. Prediction of lead content in soil based on model population analysis coupled with ELM algorithm. Remote Sensing for Natural Resources, 2021, 33(4): 143-152.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020378      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/143
Fig.1  研究区位置及采样点分布
重金属
类型
样本集 最小值/
(mg·kg-1)
最大值/
(mg·kg-1)
均值/
(mg·kg-1)
标准差/
(mg·kg-1)
变异系
数/%
Pb 全样本 15.88 95.01 50.98 15.83 0.31
建模集 18.87 84.39 50.80 15.46 0.30
验证集 31.99 65.48 49.50 10.72 0.22
Tab.1  土壤Pb含量统计特征
预处理
方法
建模集 验证集
R2 RMSE R2 RMSE RPD RPIQ
None 0.659 8.580 0.703 5.807 1.846 2.392
WT1 0.659 8.583 0.714 5.655 1.896 2.456
WT2 0.658 8.589 0.714 5.654 1.896 2.457
WT3 0.658 8.598 0.714 5.651 1.897 2.458
WT4 0.657 8.611 0.714 5.655 1.896 2.456
WT5 0.656 8.623 0.717 5.625 1.906 2.469
WT6 0.670 8.439 0.703 5.759 1.862 2.412
WT7 0.665 8.502 0.736 5.426 1.976 2.560
WT8 0.664 8.524 0.681 6.018 1.781 2.308
SG 0.667 8.458 0.723 5.604 1.913 2.479
GF 0.660 8.564 0.718 5.615 1.909 2.474
MSC 0.659 8.582 0.702 5.818 1.843 2.387
Tab.2  基于PLSR模型的不同预处理方法
Fig.2  土壤样本光谱曲线
Fig.3  CARS算法筛选变量
Fig.4  VISSA和IVSO算法迭代过程
Fig.5  ICO算法迭代过程
Fig.6  不同波长选择算法优选出的波段
模型 波长选择方法 变量数量 建模集 验证集
R2 RMSE R2 RMSE RPD RPIQ
全波段 2 001 0.702 8.450 0.736 5.426 1.976 2.560
CARS 119 0.726 6.958 0.759 5.235 2.048 2.653
PLSR VISSA 78 0.720 7.033 0.780 5.003 2.143 2.777
IVSO 98 0.718 7.050 0.802 4.748 2.258 2.926
ICO 276 0.720 7.023 0.813 4.610 2.325 3.013
SVM CARS 119 0.643 7.939 0.735 5.485 1.954 2.532
VISSA 78 0.645 7.915 0.745 5.385 1.991 2.579
IVSO 98 0.630 8.075 0.757 5.252 2.041 2.645
ICO 276 0.631 8.069 0.770 5.116 2.095 2.715
ELM CARS 119 0.814 6.338 0.806 4.703 2.279 2.953
VISSA 78 0.861 4.948 0.837 4.304 2.491 3.227
IVSO 98 0.899 4.229 0.858 4.013 2.671 3.461
ICO 276 0.877 4.653 0.863 3.953 2.712 3.514
Tab.3  3种回归模型联合各波段选择算法预测结果
Fig.7  ICO-ELM模型验证集实测值与预测值关系
[1] 宋伟, 陈百明, 刘琳. 中国耕地土壤重金属污染概况[J]. 水土保持研究, 2013,20(2):293-298.
Song W, Chen B M, Liu L. Soil heavy metal pollution of cultivated land in China[J]. Research of Soil and Water Conservation, 2013,20(2):293-298.
[2] 贺军亮, 韩超山, 韦锐, 等. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
doi: 10.6046/gtzyyg.2019.04.13
He J L, Han C S, Wei R, et al. Research on indirect hyperspectral estimating model of heavy metal Cd based on partial least squares regression[J]. Remote Sensing for Land and Resources, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
doi: 10.6046/gtzyyg.2019.04.13
[3] 高凯旋, 焦海明, 王新闯. 融合影像纹理、光谱与地形特征的森林冠顶高反演模型[J]. 国土资源遥感, 2020,32(3):63-70.doi: 10.6046/gtzyyg.2020.03.09.
doi: 10.6046/gtzyyg.2020.03.09
Gao K X, Jiao H M, Wang X C. Inversion model of forest canopy height based on image texture,spectral and topographic features[J]. Remote Sensing for Land and Resources, 2020,32(3):63-70.doi: 10.6046/gtzyyg.2020.03.09.
doi: 10.6046/gtzyyg.2020.03.09
[4] 段宏伟, 朱荣光, 许卫东, 等. 基于GA和CARS的真空包装冷却羊肉细菌菌落总数高光谱检测[J]. 光谱学与光谱分析, 2017,37(3):847-852.
Duan H W, Zhu R G, Xu W D, et al. Hyperspectral imaging detection of total viable count from vacuum packing cooling mutton based on GA and CARS algorithms[J]. Spectroscopy and Spectral Analysis, 2017,37(3):847-852.
[5] Le B T, 肖冬, 毛亚纯, 等. 可见、近红外光谱和深度学习CNN-ELM算法的煤炭分类[J]. 光谱学与光谱分析, 2018,38(7):2107-2112.
Le B T, Xiao D, Mao Y C, et al. Coal classification based on visible,near-infrared spectroscopy and CNN-ELM algorithm[J]. Spectroscopy and Spectral Analysis, 2018,38(7):2107-2112.
[6] 汪六三, 鲁翠萍, 王儒敬, 等. 土壤碱解氮含量可见/近红外光谱预测模型优化[J]. 发光学报, 2018,39(7):1016-1023.
Wang L S, Lu C P, Wang R J, et al. Optimization for Vis/NIRS prediction model of soil available nitrogen content[J]. Chinese Journal of Luminescence, 2018,39(7):1016-1023.
doi: 10.3788/fgxb
[7] 吴倩, 姜琦刚, 史鹏飞, 等. 基于高光谱的土壤碳酸钙含量估算模型研究[J]. 国土资源遥感, 2021,33(1):138-144.doi: 10.6046/gtzyyg.2020095.
doi: 10.6046/gtzyyg.2020095
Wu Q, Jiang Q G, Shi P F, et al. Estimation of soil calcium carbonate content based on hyperspectral data[J]. Remote Sensing for Land and Resources, 2021,33(1):138-144.doi: 10.6046/gtzyyg.2020095.
doi: 10.6046/gtzyyg.2020095
[8] 李跑, 周骏, 蒋立文, 等. 窗口竞争性自适应重加权采样策略的近红外特征变量选择方法[J]. 光谱学与光谱分析, 2019,39(5):1428-1432.
Li P, Zhou J, Jiang L W, et al. A variable selection approach of near infrared spectra based on window competitive adaptive reweighted sampling strategy[J]. Spectroscopy and Spectral Analysis, 2019,39(5):1428-1432.
[9] Li H, Liang Y, Xu Q, et al. Model population analysis for variable selection[J]. Journal of Chemometrics, 2010,24(7-8):418-423.
doi: 10.1002/cem.1300
[10] 于雷, 章涛, 朱亚星, 等. 基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值[J]. 农业工程学报, 2018,34(16):148-154.
Yu L, Zhang T, Zhu Y X, et al. Determination of soybean leaf SPAD value using characteristic wavelength variables preferably selected by IRIV algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(16):148-154.
[11] 刘贵珊, 张翀, 樊奈昀, 等. IVISSA算法冷鲜滩羊肉嫩度的高光谱模型优化[J]. 光谱学与光谱分析, 2020,40(8):2558-2563.
Liu G S, Zhang C, Fan N Y, et al. Hyperspectral model optimization for tenderness of chilled tan-sheep mutton based on IVISSA[J]. Spectroscopy and Spectral Analysis, 2020,40(8):2558-2563.
[12] 云永欢, 邓百川, 梁逸曾. 化学建模与模型集群分析[J]. 分析化学, 2015,43(11):1638-1647.
Yun Y H, Deng B C, Liang Y Z. Progress of chemical modeling and model population analysis[J]. Chinese Journal of Analytical Chemistry, 2015,43(11):1638-1647.
[13] Deng B C, Yun Y H, Liang Y Z, et al. A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling[J]. Analyst, 2014,139(19):4836-4845.
doi: 10.1039/C4AN00730A
[14] Wang W, Yun Y, Deng B, et al. Iteratively variable subset optimization for multivariate calibration[J]. RSC Advances, 2015,5(116):95771-95780.
doi: 10.1039/C5RA08455E
[15] Song X Z, Yue H, Hong Y, et al. A novel algorithm for spectral interval combination optimization[J]. Analytica Chimica Acta, 2016,948:19-29.
doi: 10.1016/j.aca.2016.10.041
[16] 孙凯, 孙彬彬, 周国华, 等. 福建龙海土壤重金属含量特征及影响因素研究[J]. 现代地质, 2018,32(6):1302-1310.
Sun K, Sun B B, Zhou G H, et al. Study on concentration characteristics and influencing factors of heavy metals in soils in Longhai,Fujian Province[J]. Geoscience, 2018,32(6):1302-1310.
[17] 刘智超, 蔡文生, 邵学广. 蒙特卡洛交叉验证用于近红外光谱奇异样本的识别[J]. 中国科学(B辑:化学), 2008,38(4):316-323.
Liu Z C, Cai W S, Shao X G. Identification of NIR outlier samples by MCCV[J]. Science in China Series B:Chemistry, 2008,38(4):316-323.
[18] Huang G, Huang G, Song S, et al. Trends in extreme learning machines:A review[J]. Neural Networks, 2015,61:32-48.
pmid: 25462632
[19] Tan K, Wang H, Zhang Q, et al. An improved estimation model for soil heavy metal(loid) concentration retrieval in mining areas using reflectance spectroscopy[J]. Journal of Soils and Sediments, 2018,18(5):2008-2022.
doi: 10.1007/s11368-018-1930-6
[20] 宋相中, 唐果, 张录达, 等. 近红外光谱分析中的变量选择算法研究进展[J]. 光谱学与光谱分析, 2017,37(4):1048-1052.
Song X Z, Tang G, Zhang L D, et al. Research advance of variable selection algorithms in near infrared spectroscopy analysis[J]. Spectroscopy and Spectral Analysis, 2017,37(4):1048-1052.
[1] 杜懿, 王大洋, 王大刚. GPM卫星降水产品空间降尺度研究——以贵州省为例[J]. 自然资源遥感, 2021, 33(4): 111-120.
[2] 周超凡, 宫辉力, 陈蓓蓓, 雷坤超, 施轹原, 赵宇. 联合WT-RF的津保高铁沿线地面沉降预测[J]. 自然资源遥感, 2021, 33(4): 34-42.
[3] 肖艳, 辛洪波, 王斌, 崔利, 姜琦刚. 基于小波变换和连续投影算法的黑土有机质含量高光谱估测[J]. 国土资源遥感, 2021, 33(2): 33-39.
[4] 王小兵. 融合提升小波阈值与多方向边缘检测的矿区遥感图像去噪[J]. 国土资源遥感, 2020, 32(4): 46-52.
[5] 李军军, 曹建农, 廖娟, 程贝贝. 多方向小波变换高分影像边缘提取[J]. 国土资源遥感, 2019, 31(1): 8-15.
[6] 王立娟, 靳晓, 贾虎军, 唐尧, 马国超. 基于国产高分卫星数据的矿山环境变化检测[J]. 国土资源遥感, 2018, 30(3): 151-158.
[7] 胡华龙, 薛武, 秦志远. 基于小波纹理和基元合并的高分影像居民地提取[J]. 国土资源遥感, 2017, 29(1): 21-28.
[8] 张倩. 基于双重离散小波变换的遥感图像去噪算法[J]. 国土资源遥感, 2015, 27(4): 14-20.
[9] 李文静, 温文鹏, 王清和. 基于Contourlet变换的遥感图像融合方法研究[J]. 国土资源遥感, 2015, 27(2): 44-50.
[10] 孟强强, 杨桄, 童涛, 张俭峰. 基于小波变换的多聚焦图像融合算法[J]. 国土资源遥感, 2014, 26(2): 38-42.
[11] 吴寿江, 李亮, 宫本旭, 龚梅. GeoEye-1遥感图像去雾霾方法比较[J]. 国土资源遥感, 2012, 24(3): 50-53.
[12] 董张玉, 赵萍, 刘殿伟, 王宗明, 汤旭光, 刘婧怡. 一种改进的小波变换融合方法及其效果评价[J]. 国土资源遥感, 2012, 24(3): 44-49.
[13] 于浩 孙卫东 常玲 甘甫平. 基于双树复小波的CBERS-02B星遥感影像融合及评价[J]. 国土资源遥感, 2009, 21(1): 55-59.
[14] 范文婷, 傅平. 一种基于小波变换的遥感图像融合方法[J]. 国土资源遥感, 2008, 20(3): 24-26.
[15] 张大明, 李璐, 符茂胜, 罗斌. 基于小波变换的全色和多光谱遥感图像融合[J]. 国土资源遥感, 2008, 20(1): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发