Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (1): 177-188    DOI: 10.6046/zrzyyg.2021107
     技术应用 本期目录 | 过刊浏览 | 高级检索 |
甘肃金川矿区地表三维形变InSAR监测
杨旺1,2,3(), 何毅1,2,3(), 张立峰1,2,3, 王文辉1,2,3, 陈有东1,2,3, 陈毅1,2,3
1.兰州交通大学测绘与地理信息学院,兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
3.甘肃省地理国情监测工程实验室,兰州 730070
InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province
YANG Wang1,2,3(), HE Yi1,2,3(), ZHANG Lifeng1,2,3, WANG Wenhui1,2,3, CHEN Youdong1,2,3, CHEN Yi1,2,3
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
全文: PDF(9802 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

金川矿区是我国最大的镍矿生产基地,2018年提出复采计划以来,对该矿区地表形变的监测还是空白。该文基于3个轨道(升轨128、降轨33和135)的Sentinel-1A数据,利用小基线集雷达干涉 (small baseline subset InSAR,SBAS-InSAR)和结合先验条件的最小二乘迭代法获得金川矿区2018—2020年的地表三维分量形变速率和时序形变量,并使用水准实测数据对垂直向累计形变值进行验证。结果表明: 金川矿区在3个开采区(龙首矿、西二矿、东三矿)形成了3个大面积的形变区域,主要表现为地表沉降,其中最大垂直向形变量和形变速率发生在西二矿区,分别为-408.9 mm和-162.8 mm/a。龙首矿区西南和东北边坡向矿脉处收缩,西二矿区和东三矿区形成的形变区域位移方向相似,均为沉降漏斗东西两侧向矿脉处收缩。金川矿区地表形变与人机采动、地质断层以及岩性构造紧密相关,其中人机采动是地表形变的主要原因,断层和岩性构造是地表形变的控制性因素。研究结果为金川矿区安全生产和开采规划提供理论支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨旺
何毅
张立峰
王文辉
陈有东
陈毅
关键词 形变监测SBAS-InSAR三维分解金川矿区    
Abstract

The Jinchuan mining area is the largest nickel production base in China. However, the surface deformation in the mining area has not been monitored since 2018 when the plan for restoring mining was proposed. Based on the Sentinel-1A data of three orbits (ascending orbit 128 and descending orbits 33 and 135), this study obtained the 3D surface deformation rates and time-series displacement by applying the small baseline subset InSAR (SBAS-InSAR) and the least-squares iterative method combining prior conditions. The results are as follows. Three large deformation areas have formed in three mining areas (i.e., the Longshou, Xi’er, and Dongsan mines). The deformation in these areas is primarily present as surface subsidence, with the maximum vertical subsidence and subsidence rate (i.e., -408.9 mm and -162.8 mm/a, respectively) occurring in the Xi’er Mine. For the Longshou Mine, the southwestern and northeastern slopes contract toward ore veins. For the Xi’er and Dongsan mines, the deformation areas show similar displacement directions, that is, the eastern and western sides of subsidence funnels contract toward ore veins. The surface deformation in the Jinchuan mining area is closely related to man-machine mining, geological faults, and lithologic structures. Among them, man-machine mining is the main cause for the surface deformation, while faults and lithologic structures serve as the controlling factors of the surface deformation. The results of this study will provide theoretical support for safe production and mining planning in the Jinchuan mining area.

Key wordsdeformation monitoring    SBAS-InSAR    3D decomposition    Jinchuan mining area
收稿日期: 2021-04-13      出版日期: 2022-03-14
ZTFLH:  TP79  
基金资助:甘肃省自然科学基金项目“联合InSAR与地基测量的兰州市主城区边坡形变监测研究”编号(2019M660092XB);甘肃省青年科学基金项目“基于多轨InSAR技术的城市地面沉降与土地利用演变关系——以兰州新区为例”共同资助编号(20JR10RA272)
通讯作者: 何毅
作者简介: 杨旺(1996-),男,硕士研究生,主要研究方向为InSAR技术应用。Email: 947258095@qq.com
引用本文:   
杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021107      或      https://www.gtzyyg.com/CN/Y2022/V34/I1/177
Fig.1  金川矿区地理位置和Sentinel-1A影像覆盖范围
轨道号 轨道模式 入射角
θ/(°)
方位角
α/(°)
128 升轨 34.174 4 186.940
33 降轨 44.638 7 187.807
135 降轨 41.424 3 354.702
Tab.1  Sentinel-1A影像参数
Fig.2  SBAS-InSAR处理流程
Fig.3-1  不同轨道时空基线
Fig.3-2  不同轨道时空基线
Fig.4  SAR卫星飞行方向和地表形变三维几何关系
Fig.5  金川矿区三维形变速率
Fig.6-1  金川矿区地表三维累积形变
Fig.6-2  金川矿区地表三维累积形变
Fig.7  金川矿区垂向形变时序剖面图形变区及剖面线位置
Fig.8  测试点形变曲线
Fig.9  不同轨道形变速率相关性密度散点图
Fig.10  垂向分解结果与水准数据的验证
Fig.11  2019年金川矿区三维形变速率对比验证
水准点位 水准数据 直接求解法 本文方法
1 -95.4 -61.6 -89.7
2 -56.4 -41.1 -50.2
Tab.2  垂直向形变速率对比验证
Fig.12  金川矿区地质构造与累积形变叠加简图[23]
[1] 尹宏杰. 基于InSAR的矿区地表形变监测研究[D]. 长沙:中南大学, 2009.
Yin H J. Ground subsidence monitoring in mining area using InSAR[D]. Changsha:Central South University, 2009.
[2] 中国地质调查局地质环境监测院. 全国矿山地质调查报告[R]. 北京:中国地质调查局, 2016.
China Institute of Geo-Enoironmental Monitoring, CGS. National mine geological survey report[R]. Beijing:China Geological Survey, 2016.
[3] Siriwardane H J, Amanat J. Analysis of subsidence caused by underground mining[J]. International Journal of Mining Engineering, 1984, 2(4):271-290.
doi: 10.1007/BF00881117
[4] Nie L, Wang H, Xu Y, et al. A new prediction model for mining subsidence deformation:The arc tangent function model[J]. Natural Hazards, 2015, 75(3):2185-2198.
doi: 10.1007/s11069-014-1421-z
[5] Hui X, Ma F, Zhao H, et al. Monitoring and statistical analysis of mine subsidence at three metal mines in China[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(6):3983-4001.
doi: 10.1007/s10064-018-1367-6
[6] Chen B, Li Z, Yu C, et al. Three-dimensional time-varying large surface displacements in coal exploiting areas revealed through integration of SAR pixel offset measurements and mining subsidence model[J]. Remote Sensing of Environment, 2020, 240:111663.
doi: 10.1016/j.rse.2020.111663
[7] Massonnet D, Feigl K L. Radar interferometry and its application to changes in the Earth’s surface[J]. Reviews of Geophysics, 1998, 36(4):441-500.
doi: 10.1029/97RG03139
[8] 李勇发, 左小清, 麻源源, 等. 基于PS-InSAR技术和遗传神经网络算法的矿区地表沉降监测与预计[J]. 地球物理学进展, 2020, 35(3):845-851.
Li Y F, Zuo X Q, Ma Y Y, et al. Surface subsidence monitoring and prediction based on PS-InSAR and genetic neural network algorithm[J]. Progress in Geophysics, 2020, 35(3):845-851.
[9] Simons M, Fialko Y, Rivera L. Coseismic deformation from the 1999 Mw 7.1 Hector Mine,California,earthquake as inferred from InSAR and GPS observations[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1390-1402.
doi: 10.1785/0120000933
[10] Zhao C, Lu Z, Zhang Q, et al. Mining collapse monitoring with SAR imagery data:A case study of Datong mine,China[J]. Journal of Applied Remote Sensing, 2014, 8(1):083574.
doi: 10.1117/1.JRS.8.083574
[11] Wempen J M, McCarter M K. Comparison of L-band and X-band differential interferometric synthetic aperture Radar for mine subsidence monitoring in central Utah[J]. International Journal of Mining Science and Technology, 2017, 27(1):159-163.
doi: 10.1016/j.ijmst.2016.11.012
[12] Carlà T, Farina P, Intrieri E, et al. Integration of ground-based Radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine[J]. Engineering Geology, 2018, 235:39-52.
doi: 10.1016/j.enggeo.2018.01.021
[13] Li J, Gao F, Lu J. An application of InSAR time-series analysis for the assessment of mining-induced structural damage in Panji Mine,China[J]. Natural Hazards, 2019, 97(1):243-258.
doi: 10.1007/s11069-019-03639-8
[14] Ma C, Cheng X, Yang Y, et al. Investigation on mining subsidence based on multi-temporal InSAR and time-series analysis of the small baseline subset:Case study of working faces 22201-1/2 in Bu’ertai mine,Shendong coalfield,China[J]. Remote Sensing, 2016, 8(11):951-975.
doi: 10.3390/rs8110951
[15] Pawluszek-Filipiak K, Borkowski A. Integration of DInSAR and SBAS techniques to determine mining-related deformations using sentinel-1 data:The case study of Rydułtowy mine in Poland[J]. Remote Sensing, 2020, 12(2):242-264.
doi: 10.3390/rs12020242
[16] Torres R, Snoeij P, Geudtner D, et al. GMES Sentinel-1 mission[J]. Remote Sensing of Environment, 2012, 120:9-24.
doi: 10.1016/j.rse.2011.05.028
[17] Hu J, Li Z W, Zhu J J, et al. Inferring three-dimensional surface displacement field by combining SAR interferometric phase and amplitude information of ascending and descending path[J]. Science China Earth Sciences, 2010, 53(4):550-560.
doi: 10.1007/s11430-010-0023-1
[18] 李强. 基于空天地数据集成的甘肃金川矿区地表沉降监测[D]. 绵阳:西南科技大学, 2020.
Li Q. Surface subsidence monitoring of Jinchuan mining area in gansu based on space-air-ground integration[D]. Mianyang:Southwest University of Science and Technology, 2020.
[19] 耿许可. 基于时序InSAR的龙首矿区形变监测研究[D]. 青岛:山东科技大学, 2018.
Geng X K. Study of the subsidence-monitoring in dragon head mine area with times series InSAR technology[D]. Qingdao:Shandong University of Science and Technology, 2018.
[20] 丁宁, 邓清海, 耿许可, 等. 融合时序InSAR与GPS的龙首矿露天矿坑三维变形规律研究[J]. 金属矿山, 2019(10):61-67.
Ding N, Deng Q H, Geng X K, et al. Study on the 3D deformation regularity of the open pit in Longshou mine based on time series InSAR technique and GPS[J]. Metal Mine, 2019(10):61-67.
[21] 张拥军, 杨登峰, 王金涛, 等. 露天边坡局部失稳特征的数值分析及监测[J]. 金属矿山, 2014, 43(10):142-147.
Zhang Y J, Yang D F, Wang J T, et al. Numerical analysis and monitoring of local instability characteristics of open pit slope[J]. Metal Mine, 2014, 43(10):142-147.
[22] Yang S, Yang G, Qu W, et al. Pt-Os isotopic constraints on the age of hydrothermal overprinting on the Jinchuan Ni-Cu-PGE deposit,China[J]. Mineralium Deposita, 2018, 53(6):757-774.
doi: 10.1007/s00126-017-0775-z
[23] Prichard H M, Knight R D, Fisher P C, et al. Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion,China:An example of selenium remobilization by postmagmatic fluids[J]. Mineralium Deposita, 2013, 48(6):767-786.
doi: 10.1007/s00126-013-0454-7
[24] Wang W, He Y, Zhang L, et al. Analysis of surface deformation and driving forces in Lanzhou[J]. Open Geosciences, 2020, 12(1):1127-1145.
doi: 10.1515/geo-2020-0128
[25] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
doi: 10.1109/TGRS.2002.803792
[26] 白泽朝, 汪宝存, 靳国旺, 等. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 自然资源遥感, 2019, 31(2):210-217.doi: 10.6046/gtzyyg.2019.02.29.
doi: 10.6046/gtzyyg.2019.02.29
Bai Z C, Wang B C, Jin G W, et al. Applicability analysis of ground deformation monitoring in mining area by Sentinel-1A data[J]. Remote Sensing for Land and Resources, 2019, 31(2):210-217.doi: 10.6046/gtzyyg.2019.02.29.
doi: 10.6046/gtzyyg.2019.02.29
[27] Lanari R, Mora O, Manunta M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1377-1386.
doi: 10.1109/TGRS.2004.828196
[28] He Y, Chen Y, Wang W, et al. TS-InSAR analysis for monitoring ground deformation in Lanzhou New District,the Loess Plateau of China,from 2017 to 2019[J]. Advances in Space Research, 2021, 67(4):1267-1283.
doi: 10.1016/j.asr.2020.11.004
[29] He Y, Wang W, Yan H, et al. Characteristics of surface deformation in Lanzhou with Sentinel-1A TOPS[J]. Geosciences, 2020, 10(3):99-102.
doi: 10.3390/geosciences10030099
[30] 王家庆. 2008年改则地震多视角InSAR三维形变场及断层滑动反演[D]. 北京:中国地震局地质研究所, 2015.
Wang J Q. The three-dimensional deformation field of the 2008 Gaize Tibet earthquake resolved from InSAR measurements with mult-incidence angle and inversion of fault slip distributions[D]. Beijing:Institute of Geology, China Earthquake Administration, 2015.
[31] Wright T J, Parsons B E, Lu Z. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1):1-5.
[32] Peck R B. Deep excavations and tunneling in soft ground[C]// Proc.7th ICSMFE, 1969:225-290.
[33] 张鹏飞. 基于时序InSAR技术的山区煤矿开采沉陷监测研究[D]. 徐州:中国矿业大学(徐州),2014.
Zhang P F. Research on mining subsidence monitoring of mountain coal mine based on time-series InSAR technology[D]. Xuzhou:China University of Mining and Technology(Xuzhou),2014.
[34] 胡俊. 基于现代测量平差的InSAR三维形变估计理论与方法[D]. 长沙:中南大学, 2013.
Hu J. Theory and method of InSAR 3D deformation estimation based on modern measurement adjustment[D]. Changsha:Central South University, 2013.
[35] 王志伟. 基于多源InSAR数据的三维地表形变解算方法研究[J]. 测绘学报, 2019, 48(9):1206.
Wang Z W. Research on 3D surface deformation calculation method based on multi-source InSAR data[J]. Journal of Geomatics and Mapping, 2019, 48(9):1206.
[36] 祝传广. 融合多源SAR影像的形变监测研究[D]. 徐州:中国矿业大学(徐州),2015.
Zhu C G. Research on deformation monitoring based on multi-source SAR image fusion[D]. Xuzhou:China University of Mining and Technology(Xuzhou),2015.
[37] 刘志敏, 李永生, 张景发, 等. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 自然资源遥感, 2014, 26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06.
doi: 10.6046/gtzyyg.2014.03.06
Liu Z M, Li Y S, Zhang J F, et al. An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J]. Remote Sensing for Land and Resources, 2014, 26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06.
doi: 10.6046/gtzyyg.2014.03.06
[38] Li X, Wang S J, Liu T Y, et al. Engineering geology,ground surface movement and fissures induced by underground mining in the Jinchuan nickel mine[J]. Engineering Geology, 2004, 76(1-2):93-107.
doi: 10.1016/j.enggeo.2004.06.008
[39] Sun Q, Ma F, Guo J, et al. Deformation failure mechanism of deep vertical shaft in Jinchuan mining area[J]. Sustainability, 2020, 12(6):2226-2248.
doi: 10.3390/su12062226
[1] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[2] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[3] 李柱, 范洪冬, 高彦涛, 许耀宗. 基于DS-InSAR的乌达煤田火区长时序地表形变监测与分析[J]. 自然资源遥感, 2022, 34(3): 138-145.
[4] 麻学飞, 张双成, 惠文华, 许强. 山西省临汾市矿区地表形变InSAR大范围探测与监测[J]. 自然资源遥感, 2022, 34(3): 146-153.
[5] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[6] 徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
[7] 何海英, 陈彩芬, 陈富龙, 唐攀攀. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1): 205-213.
[8] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
[9] 刘志敏, 李永生, 张景发, 罗毅, 刘斌. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 国土资源遥感, 2014, 26(3): 37-42.
[10] 黄昭权, 张登荣, 王帆, 党福星, 李志忠. 基于差分干涉SAR的煤田火区地表形变监测[J]. 国土资源遥感, 2010, 22(4): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发