Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 20-29    DOI: 10.6046/zrzyyg.2021354
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法
徐子兴1(), 季民1(), 张过2, 陈振炜2
1.山东科技大学测绘与空间信息学院,青岛 266590
2.武汉大学测绘遥感信息工程国家重点实验室,武汉 430079
Method for dynamic prediction of mining subsidence based on the SBAS-InSAR technology and the logistic model
XU Zixing1(), JI Min1(), ZHANG Guo2, CHEN Zhenwei2
1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
2. National Key Laboratory of Surveying and Remote Sensing Information Engineering, Wuhan University, Wuhan 430079, China
全文: PDF(6958 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

根据矿区开采沉降规律对后续沉降进行预测是评估矿山开采风险、调整开采规划的关键。对使用Logistic时间函数模型进行矿区沉降预测中的可用条件进行了分析和模拟实验,并提出了一种基于小基线集合成孔径雷达干涉测量(SBAS-InSAR)技术和Logistic模型的矿区沉降动态预测方法。首先,通过SBAS-InSAR获得矿区的时序沉降数据; 然后,以时序沉降数据作为拟合数据,采用信赖域算法逐像元计算其Logistic模型参数,根据Logistic模型可用条件,确定出可以对后续沉降进行预测的像元范围; 最后,根据Logistic模型对可预测范围内的后续沉降进行预测。以内蒙古鄂尔多斯市某矿区为研究区对上述预测方法进行了实验,采用对应日期的InSAR监测结果对预测结果进行了验证,结果表明: 36 d后和108 d后预测结果的均方根误差分别为0.010 1 m和0.023 6 m,预测误差小于0.03 m的比例分别达到98.9%和89.3%,表明该动态预测模型预测精度较高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐子兴
季民
张过
陈振炜
关键词 SBAS-InSARLogistic模型煤矿开采沉降动态预测    
Abstract

Predicting the subsequent subsidence in mining areas according to the law of mining subsidence is the key to assessing mining risks and adjusting mining planning. This study determined the available conditions of the logistic model for mining subsidence prediction through analysis and simulation experiments and proposed a method for the dynamic prediction of mining subsidence based on small baseline subset (SBAS)-interferometric synthetic aperture radar (InSAR) technology and the logistic model. Firstly, the time-series subsidence data of a mining area was obtained using the SBAS-InSAR technology. Then, taking the time series subsidence data as the data for fitting, the parameters of the logistic model were calculated pixel by pixel by using the trust region algorithm. Then, the pixel range in which the subsequent subsidence can be predicted was determined according to the available conditions of the logistic model. Finally, according to the Logistic model, the subsequent subsidence within the predictable range was predicted. This method was applied to a certain mining area in Erdos City, Inner Mongolia for tests, and the prediction results were verified using the InSAR monitoring results of corresponding dates. The predicted results after 36 days and 108 days of ming had the root mean square error (RMSE) of 0.010 1 m and 0.023 6 m, respectively, and their proportion with prediction errors of less than 0.03 m reached 98.9% and 89.3%, respectively. These results indicate that the method for dynamic prediction proposed in this study has high prediction accuracy.

Key wordsSBAS-InSAR    Logistic model    coal mining subsidence    dynamic prediction
收稿日期: 2021-10-25      出版日期: 2022-06-20
ZTFLH:  TD325  
  P237  
基金资助:国家自然科学基金项目“X波段双天线SAR卫星干涉应用方法与设计指标研究”(418013973);山东省重大科技创新工程项目“省级自然资源监测监管大数据应用服务平台建设”(2019JZZY020103)
通讯作者: 季民
作者简介: 徐子兴(1997-),男,硕士,研究方向为合成孔径雷达干涉测量与应用。Email: zixingxu@whu.edu.cn
引用本文:   
徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
XU Zixing, JI Min, ZHANG Guo, CHEN Zhenwei. Method for dynamic prediction of mining subsidence based on the SBAS-InSAR technology and the logistic model. Remote Sensing for Natural Resources, 2022, 34(2): 20-29.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021354      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/20
Fig.1  参与拟合数据对沉降过程的不同覆盖范围对拟合正确性的影响
Fig.2  信赖域算法计算Logistic模型参数流程图
Fig.3  矿区沉降动态预测方法流程图
Fig.4  研究矿区位置
序号 日期 入射角/(°) 序号 日期 入射角/(°) 序号 日期 入射角/(°)
1 2017/9/20 33.914 15 2018/3/19 33.910 29 2018/9/27 33.915
2 2017/10/2 33.913 16 2018/3/31 33.912 30 2018/10/9 33.912
3 2017/10/14 33.912 17 2018/4/12 33.917 31 2018/10/21 33.912
4 2017/10/26 33.910 18 2018/5/6 33.915 32 2018/11/2 33.910
5 2017/11/7 33.909 19 2018/5/18 33.915 33 2018/11/14 33.908
6 2017/11/19 33.909 20 2018/5/30 33.916 34 2018/11/26 33.908
7 2017/12/1 33.908 21 2018/6/11 33.915 35 2018/12/8 33.909
8 2017/12/13 33.908 22 2018/6/23 33.916 36 2018/12/20 33.906
9 2017/12/25 33.907 23 2018/7/5 33.915 37 2019/1/1 33.907
10 2018/1/6 33.907 24 2018/7/17 33.917 38 2019/1/25 33.908
11 2018/1/30 33.909 25 2018/7/29 33.915 39 2019/2/6 33.908
12 2018/2/11 33.909 26 2018/8/22 33.915 40 2019/2/18 33.909
13 2018/2/23 33.909 27 2018/9/3 33.915 轨道号 Path: 11 Frame: 121
14 2018/3/7 33.910 28 2018/9/15 33.917 极化方式 VV
Tab.1  Sentinel-1A影像参数
Fig.5-1  时序沉降图
Fig.5-2  时序沉降图
Fig.6  Logistic模型拟合情况
Fig.7  预测沉降图
Fig.8  一致性验证图
Fig.9  预测误差统计柱状图
Fig.10  预测误差空间分布
Fig.11  最小加速度点出现时间与预测误差之间的关系
[1] 何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1991.
He G Q, Yang L, Ling G D, et al. Mining subsidence[M]. Xuzhou: China University of Mining and Technology Press, 1991.
[2] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10):1717-1733.
Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Journal of Geodesy and Geoinformation Science, 2017, 46(10):1717-1733.
[3] 葛大庆, 王艳, 范景辉, 等. 地表形变D-InSAR监测方法及关键问题分析[J]. 国土资源遥感, 2007, 9(4):14-22.doi: 10.6046/gtzyyg.2007.04.04.
doi: 10.6046/gtzyyg.2007.04.04
Ge D Q, Wang Y, Fan J H, et al. A study of surface deformation monitoring using differential SAR interferometry technique and an analysis of its key problems[J]. Remote Sensing for Land and Resources, 2007, 19(4):14-22.doi: 10.6046/gtzyyg.2007.04.04.
doi: 10.6046/gtzyyg.2007.04.04
[4] 刘一霖, 张勤, 黄海军, 等. 矿区地表大量级沉陷形变短基线集InSAR监测分析[J]. 国土资源遥感, 2017, 29(2):144-151.doi: 10.6046/gtzyyg.2017.02.21.
doi: 10.6046/gtzyyg.2017.02.21
Liu Y L, Zhang Q, Huang H J, et al. Monitoring and analyzing large scale land subsidence over the mining area using small baseline subset InSAR[J]. Remote Sensing for Land and Resources, 2017, 29(2):144-151.doi: 10.6046/gtzyyg.2017.02.21.
doi: 10.6046/gtzyyg.2017.02.21
[5] Chen Y, Tong Y, Tan K. Coal mining deformation monitoring using SBAS-InSAR and offset tracking:A case study of Yu County,China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020(13):6077-6087.
[6] 刘志敏, 李永生, 张景发, 等. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 国土资源遥感, 2014, 26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06.
doi: 10.6046/gtzyyg.2014.03.06
Liu Z M, Li Y S, Zhang J F, et al. An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J]. Remote Sensing for Land and Resources, 2014, 26(3):37-42.doi: 10.6046/gtzyyg.2014.03.06.
doi: 10.6046/gtzyyg.2014.03.06
[7] Yuan M, Li M, Liu H, et al. Subsidence monitoring base on SBAS-InSAR and slope stability analysis method for damage analysis in mountainous mining subsidence regions[J]. Remote Sensing, 2021, 13(16):3107.
doi: 10.3390/rs13163107
[8] Knothe S. Time influence on a formation of a subsidence surface[J]. Archiwum Gornicwai Huticwa Krakow, 1952, 1(1):1-3.
[9] 张兵, 崔希民, 赵玉玲, 等. 优化分段Knothe时间函数求参方法[J]. 煤炭学报, 2018, 43(12):3379-3386.
Zhang B, Cui X M, Zhao Y L, et al. Parameter calculation method for optimized segmented Knothe time function[J]. Journal of China Coal Society, 2018, 43(12):3379-3386.
[10] 万芳芳, 罗文柯, 李树清, 等. 厚松散层矿区地表动态移动预计研究[J]. 煤炭工程, 2018, 50(4):105-109.
Wan F F, Luo W K, Li S Q, et al. Study on prediction of surface dynamic movement in thick unconsolidated mining area[J]. Coal Engineering, 2018, 50(4):105-109.
[11] 高建, 陈炳乾, 冯遵德. 一种基于TerraSAR数据的矿区InSAR最大可检测动态形变梯度模型[J]. 大地测量与地球动力学, 2020, 40(11):1175-1181.
Gao J, Chen B Q, Feng Z D. A maximum detectable dynamic deformation gradient model of InSAR based on TerraSAR data[J]. Journal of Geodesy and Geodynamics, 2020, 40(11):1175-1181.
[12] 王小华, 胡海峰, 廉旭刚. 基于Weibull时间序列函数与负指数法的动态沉陷预计[J]. 金属矿山, 2015(8):158-162.
Wang X H, Hu H F, Lian X G. Dynamic subsidence prediction method based on negative exponential method and Weibull time sequence function[J]. Metal Mine, 2015(8):158-162.
[13] 白斌, 张文泉. 厚松散层开采松散层沉降时间序列模型研究[J]. 煤炭技术, 2018, 37(9):176-177.
Bai B, Zhang W Q. Study on time series model of loose layer settlement in thick loose layer mining[J]. Coal Technology, 2018, 37(9):176-177.
[14] 张兵, 崔希民, 胡青峰. 开采沉陷动态预计的正态分布时间函数模型研究[J]. 煤炭科学技术, 2016, 44(4):140-145,174.
Zhang B, Cui X M, Hu Q F. Study on normal distributed time function model to dynamically predict mining subsidence[J]. Coal Science and Technology, 2016, 44(4):140-145,174.
[15] 张凯, 胡海峰, 廉旭刚, 等. 地表动态沉陷预测正态时间函数模型优化研究[J]. 煤炭科学技术, 2019, 47(9):235-240.
Zhang K, Hu H F, Lian X G, et al. Optimization of surface dynamic subsidence prediction normal time function model[J]. Coal Science and Technology, 2019, 47(9):235-240.
[16] 张文志, 邹友峰, 任筱芳. Logistic模型在开采沉陷单点预测中的研究[J]. 采矿与安全工程学报, 2009, 26(4):486-489.
ZHANG W Z, Zou Y F, Ren X F. Research on Logistic model in forecasting subsidence single—point during mining[J]. Journal of Mining and Safety Engineering, 2009, 26(4):486-489.
[17] 杨泽发, 易辉伟, 朱建军, 等. 基于InSAR时序形变的矿区全盆地沉降时空演化规律分析[J]. 中国有色金属学报, 2016, 26(7):1515-1522.
Yang Z F, Yi H W, Zhu J J, et al. Spatio-temporal evolution law analysis of whole mining subsidence basin based on InSAR-derived time-series deformation[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(7):1515-1522.
[18] 尹宏杰, 朱建军, 李志伟, 等. 基于SBAS的矿区形变监测研究[J]. 测绘学报, 2011, 40(1):52-58.
Yin H J, Zhu J J, Li Z W, et al. Ground subsidence monitoring in mining area using DInSAR SBAS algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1):52-58.
[19] 姜兆英. 短基线集InSAR形变模型的不适定问题解算方法研究[D]. 青岛: 山东科技大学, 2018.
Jiang Z Y. Study on the solving methods of the ill-Posed problems of the SBAS InSAR deformation model[D]. Qingdao: Shandong University of Science and Technology, 2018.
[20] 崔兆诚. 无约束优化问题改进的信赖域方法[D]. 哈尔滨: 哈尔滨工业大学, 2011.
Cui Z C. The improved trust region methods for unconstrained optimization problems[D]. Harbin: Harbin Institute of Technology, 2011.
[1] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[2] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[3] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[4] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[5] 何海英, 陈彩芬, 陈富龙, 唐攀攀. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1): 205-213.
[6] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发