Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 171-179    DOI: 10.6046/zrzyyg.2021415
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于时序InSAR的新疆阿希矿区地表形变监测与分析
虎小强1(), 杨树文1,2,3(), 闫恒1, 薛庆1, 张乃心1
1.兰州交通大学测绘与地理信息学院,兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
3.甘肃省地理国情监测工程实验室,兰州 730070
Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang
HU Xiaoqiang1(), YANG Shuwen1,2,3(), YAN Heng1, XUE Qing1, ZHANG Naixin1
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
全文: PDF(6961 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

新疆阿希矿区地理环境复杂,长期的矿产资源开采致使矿区的地面发生了较为严重的沉降和变形,造成了采矿生产安全隐患和周边生态环境的破坏。为了进一步研究分析阿希矿区地面沉降时空变化特征和地表形变规律。首先,利用小基线集合成孔径雷达干涉测量(small baseline subset-interferometric synthetic aperture Radar,SBAS-InSAR)技术对2017年2月9日—2021年4月25日获取的127景升轨Sentinel-1A影像数据进行沉降计算; 其次,将InSAR沉降监测结果与水准测量结果进行对比验证; 最后,分析了阿希矿区近5 a地面沉降时空变化特征,并研究了影响矿区地面沉降的驱动因素。结果表明,在整个监测期间内,阿希矿区地表形变呈现出整体基本趋于稳定状态、局部沉降较为明显的特征。造成矿区沉降的主要因素为矿产开采、地质构造、降水及露天矿井蓄水等。本研究可为矿区地面沉降监测以及今后地下矿物的合理开采提供科学依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
虎小强
杨树文
闫恒
薛庆
张乃心
关键词 阿希矿区SBAS-InSAR地面沉降时空变化监测驱动因素    
Abstract

The Axi mining area in Xinjiang has a complex geographical environment. The long-term exploitation of mineral resources has caused severe ground subsidence and deformation in the mining area, as well as safety hazards of mining and production and the destruction of the surrounding ecological environment. This study aims to further investigate and analyze the spatial-temporal variation characteristics of the ground subsidence and the patterns of surface deformation in the Axi mining area. To this end, this study first calculated the land subsidence using the small baseline subset-interferometric synthetic aperture Radar (SBAS-InSAR) technique based on the 127 scenes descending Sentinel-1A images acquired from February 9, 2017 to April 25, 2021. Then, it compared the subsidence monitoring results obtained using the InSAR technique with the leveling results for verification. Finally, this study analyzed the spatial-temporal variation characteristics of land subsidence in the Axi mining area in recent five years and investigated the driving factors for the land subsidence. The results show that the surface deformation of the Axi mining area showed a roughly stable trend and significant local subsidence throughout the monitoring period. The main factors affecting the ground subsidence included mineral exploitation, geological structure, precipitation, and the impoundment of open-pit mines. This study will provide a scientific basis for ground subsidence monitoring and the future proper exploitation of underground minerals in the Axi mining area.

Key wordsAxi mining area    SBAS-InSAR    land subsidence    spatial-temporal change monitoring    driving factor
收稿日期: 2021-11-30      出版日期: 2023-03-20
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“西北重点城市彩钢板建筑群与产业园区时空关联关系”(42161069);国家自然科学基金项目“基于高分辨率卫星影像的彩钢板建筑与城市空间结构演变关系研究”(41761082)
通讯作者: 杨树文(1975-),男,博士,教授,研究方向为遥感数字图像处理及信息自动提取、灾害遥感。Email: 825198827@qq.com
作者简介: 虎小强(1995-),男,硕士研究生,研究方向为InSAR形变监测。Email: 1938204120@qq.com
引用本文:   
虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021415      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/171
Fig.1  研究区位置
Fig.2  SBAS-InSAR处理流程
Fig.3  SBAS-InSAR时空基线
Fig.4  2017—2021年新疆阿希矿区地表年平均形变速率
重点监测点 平均形变速率
N1 -14
N2 -17
N3 -21
N4 -15
N5 -10
Tab.1  2017—2021年监测点平均形变速率
序号 InSAR形变量 水准形变量 差值
NJ01 -2.5 -1.2 1.3
NJ02 -3.7 -1.9 1.8
NJ03 -3.1 -2.1 1.0
NJ04 -6.6 -4.3 2.3
NJ05 -13.7 -11.8 1.9
NJ06 -4.8 -3.4 1.4
NJ07 -9.1 -7.9 1.2
NJ08 -15.4 -12.1 3.3
Tab.2  SBAS-InSAR监测结果精度验证
Fig.5  新疆阿希矿区地面沉降空间演化过程
Fig.6  重点监测点地表累积形变折线图
Fig.7  重点监测点地表累积形变拟合曲线
Fig.8  研究区工程演化与形变关系
Fig.9  阿希金矿矿区地质构造与地面沉降关系[28-29]
季节 春季 夏季 秋季 冬季
形变速率 -1.63 -2.87 -1.98 -3.06
Tab.3  2019年各季节形变速率
Fig.10  地面沉降与降水关系
Fig.11  矿井蓄水与沉降关系
[1] 李毅, 蒋金雄, 杜玉玲, 等. 融合分布式目标的矿区采动地表时序InSAR监测[J]. 中国矿业大学学报, 2020, 49(6):1199-1206,1232.
Li Y, Jiang J X, Du Y L, et al. Mining surface time series InSAR monitoring of mining area integrating distributed targets[J]. Journal of China University of Mining and Technology, 2020, 49(6):1199-1206,1232.
[2] 徐郡, 胡晋山, 康建荣, 等. 基于SBAS-InSAR的矿区村庄地面沉降监测与分析[J]. 金属矿山, 2019(10):74-80.
Xu J, Hu J S, Kang J R, et al. Monitoring and analysis of land subsidence of mining villages based on SBAS-InSAR[J]. Metal Mines, 2019(10):74-80.
[3] 许强, 蒲川豪, 赵宽耀, 等. 延安新区地面沉降时空演化特征时序InSAR监测与分析[J]. 武汉大学学报(信息科学版), 2021, 46(7):957-969.
Xu Q, Pu C H, Zhao K Y, et al. Temporal InSAR monitoring and analysis of temporal and spatial evolution characteristics of land subsidence in Yan’an new area[J]. Journal of Wuhan University (Information Science Edition), 2021, 46(7):957-969.
[4] Shi M, Gong H L, Gao M L, et al. Recent ground subsidence in the North China Plain,China,revealed by Sentinel-1A datasets[J]. Remote Sensing, 2020, 12(21):2579.
doi: 10.3390/rs12162579
[5] 夏元平, 陈志轩, 张毅. 南昌市地面沉降InSAR监测及影响因子分析[J]. 测绘科学, 2020, 45(11):115-122,129.
Xia Y P, Chen Z X, Zhang Y. InSAR monitoring and impact factor analysis of land subsidence in Nanchang[J]. Surveying and Mapping Science, 2020, 45(11):115-122,129.
[6] 袁悦, 贾丽云, 张绪教, 等. 基于SBAS-InSAR技术的海口地区地面沉降监测及机理分析[J]. 地理与地理信息科学, 2020, 36(5):56-64.
Yuan Y, Jia L Y, Zhang X J, et al. Monitoring and mechanism analysis of land subsidence in Haikou area based on SBAS-InSAR technology[J]. Geography and Geographic Information Science, 2020, 36(5):56-64.
[7] Dong L K, Wang C, Tang Y X, et al. Time series InSAR three-dimensional displacement inversion model of coal mining areas based on symmetrical features of mining subsidence[J]. Remote Sensing, 2021, 13(11):2143.
doi: 10.3390/rs13112143
[8] Yang Q, Chang Z Q, Wang Y Q, et al. Ground deformation of Dongsheng mining area revealed by multi-temporal InSAR[C]// IOP Conference Series: Earth and Environmental Science.IOP Publishing, 2021, 675(1):012029.
[9] Vassileva M, AlHalbouni D, Motagh M, et al. A decade-long silent ground subsidence hazard culminating in a metropolitan disaster in Maceió,Brazil[J]. Scientific Reports, 2021, 11(1):1-13.
doi: 10.1038/s41598-020-79139-8
[10] 王辉, 曾琪明, 焦健, 等. 结合序贯平差方法监测地表形变的InSAR时序分析技术[J]. 北京大学学报(自然科学版), 2021, 57(2):241-249.
Wang H, Zeng Q M, Jiao J, et al. InSAR time series analysis technology for monitoring surface deformation combined with sequential adjustment method[J]. Journal of Peking University (Natural Science Edition), 2021, 57(2):241-249.
[11] 魏聪敏, 葛伟鹏, 邵延秀, 等. 利用Sentinel-1A合成孔径雷达干涉时间序列监测陇东地区地面沉降变形[J]. 遥感技术与应用, 2020, 35(4):864-872.
Wei C M, Ge W P, Shao Y X, et al. Monitoring land subsidence and deformation in Longdong area using Sentinel-1A synthetic aperture Radar interferometric time series[J]. Remote Sensing Technology and Application, 2020, 35(4):864-872.
[12] 王海艳, 冯光财, 苗露, 等. InSAR视角下准噶尔盆地农业灌溉区地表形变特征和演化规律[J]. 遥感学报, 2020, 24(10):1233-1242.
Wang H Y, Feng G C, Miao L, et al. Surface deformation characteristics and evolution law of agricultural irrigation area in Junggar Basin from the perspective of InSAR[J]. Journal of Remote Sensing, 2020, 24(10):1233-1242.
[13] Xu J M, Zhu W B, Xu J L, et al. High-intensity longwall mining-induced ground subsidence in Shendong coalfield,China[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 141:104730.
doi: 10.1016/j.ijrmms.2021.104730
[14] 丁朋朋, 贾超, 韩瑶, 等. 时序InSAR技术的潍北平原地面沉降分析[J]. 测绘科学, 2021, 46(8):135-140.
Ding P P, Jia C, Han Y, et al. Land subsidence analysis of Weibei plain using time series InSAR technology[J]. Surveying and Mapping Science, 2021, 46(8):135-140.
[15] 施显健, 任超, 周吕, 等. InSAR填海区地铁沿线地表沉降反演分析[J]. 测绘科学, 2021, 46(2):146-151,164.
Shi X J, Ren C, Zhou L, et al. Inversion analysis of surface subsidence along subway in InSAR reclamation area[J]. Surveying and Mapping Science, 2021, 46(2):146-151,164.
[16] 任欣, 易加强. 新疆伊宁县地质灾害特征及其防治[J]. 西部探矿工程, 2014, 26(7):101-103.
Ren X, Yi J Q. Characteristics and prevention of geological disasters in Yining County,Xinjiang[J]. Western Exploration Engineering, 2014, 26(7):101-103.
[17] 王宝刚, 张晓斌, 张铭. 新疆阿希勒金矿床地质特征及找矿标志[J]. 陕西地质, 2018, 36(1):20-25.
Wang B G, Zhang X B, Zhang M. Geological characteristics and prospecting criteria of Axile gold deposit in Xinjiang[J]. Shanxi Geology, 2018, 36(1):20-25.
[18] 胡乐银, 张景发, 商晓青. SBAS-InSAR技术原理及其在地壳形变监测中的应用[J]. 地壳构造与地壳应力文集, 2010(1):82-89.
Hu L Y, Zhang J F, Shang X Q. Principle of SBAS-InSAR technology and its application in crustal deformation monitoring[J]. Collected Works of Crustal Structure and Crustal Stress, 2010(1):82-89.
[19] 李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5):1476-1486.
Li S S, Li Z W, Hu J, et al. Monitoring seasonal frozen soil deformation in Qinghai-Tibet Plateau by SBAS-InSAR technology[J]. Chinese Journal of Geophysics, 2013, 56(5):1476-1486.
[20] 董少春, 种亚辉, 胡欢, 等. 基于时序InSAR的常州市2015-2018年地面沉降监测[J]. 南京大学学报(自然科学), 2019, 55(3):370-380.
Dong S C, Zhong Y H, Hu H, et al. Land subsidence monitoring in Changzhou from 2015 to 2018 based on time series InSAR[J]. Journal of Nanjing University (Natural Science), 2019, 55(3):370-380.
[21] 曹发伟, 廖维谷. SBAS技术在矿区地面沉降监测中的应用[J]. 测绘通报, 2021(3):156-158,163.
Cao F W, Liao W G. Application of SBAS technology in land subsidence monitoring in mining area[J]. Surveying and Mapping Bulletin, 2021(3):156-158,163.
[22] Amani M, Poncos V, Brisco B, et al. InSAR coherence analysis for wetlands in Alberta,Canada using time-series Sentinel-1 data[J]. Remote Sensing, 2021, 13(16):3315.
doi: 10.3390/rs13163315
[23] Gong C G, Lei S G, Bian Z F, et al. Using time series InSAR to assess the deformation activity of open-pit mine dump site in severe cold area[J]. Journal of Soils and Sediments, 2021, 21(11):3717-3732.
doi: 10.1007/s11368-021-03040-8
[24] Liu J H, Hu J, Bürgmann R, et al. A strain-model based InSAR time series method and its application to the Geysers Geothermal field,California[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(8): e2021JB021939.
[25] 沙永莲, 王晓文, 刘国祥, 等. 基于SBAS InSAR的新疆哈密砂墩子煤田开采沉陷监测与反演[J]. 自然资源遥感, 2021, 33(3):194-201.doi:10.6046/zrzyyg.2020026.
doi: 10.6046/zrzyyg.2020026
Sha Y L, Wang X W, Liu G X, et al. SBAS-InSAR based monitoring and inversion of surface subsidence of the Shadunzi coal mine in Hami City,Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3):194-201.doi:10.6046/zrzyyg.2020026.
doi: 10.6046/zrzyyg.2020026
[26] 张扬. 武汉市地面沉降时空格局、驱动因子及水文效应研究[D]. 武汉: 武汉大学, 2019.
Zhang Y. Study on temporal and spatial pattern,driving factors and hydrological effects of land subsidence in Wuhan[D]. Wuhan: Wuhan University, 2019.
[27] 贺小平. 阿希金矿床地质特征及成因探讨[J]. 新疆有色金属, 2001(4):1-4.
He X P. Geological characteristics and genesis of Axi gold deposit[J]. Xinjiang Nonferrous Metals, 2001(4):1-4.
[28] 魏佳林, 曹新志, 王庆峰, 等. 新疆阿希金矿床黄铁矿标型特征及其地质意义[J]. 地质科技情报, 2011, 30(5):89-96.
Wei J L, Cao X Z, Wang Q F, et al. Typomorphic characteristics and geological significance of pyrite in Axi gold deposit,Xinjiang[J]. Geoscience and Technology Information, 2011, 30(5):89-96.
[29] 彭义伟, 顾雪祥, 章永梅, 等. 新疆阿希与塔吾尔别克金矿床的成因联系:来自流体包裹体、S-Pb同位素和黄铁矿热电性的证据[J]. 地质学报, 2020, 94(10):2919-2945.
Peng Y W, Gu X X, Zhang Y M, et al. Geochemical characteristics and prospecting potential of Xilaokou gold deposit,Shandong Province[J]. Acta Geological Sinica, 2020, 94(10):2919-2945.
[30] 李志忠. 浅谈新疆阿希金矿床地质特征及成矿机理[J]. 新疆有色金属, 2006(3):6-7.
Li Z Z. Geological characteristics and metallogenic mechanism of Axi gold deposit in Xinjiang[J]. Xinjiang Nonferrous Metals, 2006(3):6-7.
[1] 高晨, 马栋, 屈曼, 钱建国, 尹海权, 侯晓真. 基于PS-InSAR的怀来地震台钻孔体应变异常机理研究[J]. 自然资源遥感, 2023, 35(3): 153-159.
[2] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 天津市南部平原地面沉降区新兴风险评估[J]. 自然资源遥感, 2023, 35(2): 182-192.
[3] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[4] 林雪敏, 李伟峰, 王红, 明冬萍, 韩立建. 我国东部沿海三大城市群地下水储量变化与驱动因素分析[J]. 自然资源遥感, 2022, 34(4): 262-271.
[5] 于文, 宫辉力, 陈蓓蓓, 周超凡. 北京东部平原区地面沉降时空演化特征及预测[J]. 自然资源遥感, 2022, 34(4): 183-193.
[6] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[7] 朱思佳, 冯徽徽, 邹滨, 叶书朝. 2000—2019年洞庭湖流域植被NPP时空特征及驱动因素分析[J]. 自然资源遥感, 2022, 34(3): 196-206.
[8] 李静芝, 王苗, 冯文静, 李彬. 湘西州地区生态系统服务价值时空特征及驱动分析[J]. 自然资源遥感, 2022, 34(3): 207-217.
[9] 徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
[10] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[11] 周超凡, 宫辉力, 陈蓓蓓, 雷坤超, 施轹原, 赵宇. 联合WT-RF的津保高铁沿线地面沉降预测[J]. 自然资源遥感, 2021, 33(4): 34-42.
[12] 史珉, 宫辉力, 陈蓓蓓, 高明亮, 张舜康. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4): 55-63.
[13] 何海英, 陈彩芬, 陈富龙, 唐攀攀. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1): 205-213.
[14] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J]. 国土资源遥感, 2020, 32(4): 16-22.
[15] 汪宝存, 朱琳, 潘登, 郭凌飞, 彭鹏. 郑州市地面沉降时空演变规律研究[J]. 国土资源遥感, 2020, 32(3): 143-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发