Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 1-14    DOI: 10.6046/zrzyyg.2021433
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的空谱遥感图像融合综述
胡建文(), 汪泽平, 胡佩
长沙理工大学电气与信息工程学院,长沙 410114
A review of pansharpening methods based on deep learning
HU Jianwen(), WANG Zeping, HU Pei
School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
全文: PDF(1720 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

随着遥感技术的快速发展与广泛应用,对获取的遥感图像质量有了更高的要求。但是,难以直接获得高空间分辨率多光谱遥感图像。为了结合不同成像传感器的信息,获得高质量的图像,图像融合技术应运而生。空谱遥感图像融合是一种获取高空间分辨率多光谱图像的有效方法,目前已有许多学者针对空谱遥感图像融合展开研究,取得了较多成果。近年来,深度学习理论得到了快速发展,广泛应用于空谱遥感图像融合。为了让学者们能够更系统地了解空谱遥感图像融合的现状,推动空谱遥感图像融合的发展,首先对常用的遥感卫星作了介绍,并简单总结了传统的经典空谱图像融合算法; 其次,从监督学习、无监督学习和半监督学习3个方面,重点对基于深度学习的空谱图像融合算法进行了阐述,还对损失函数进行了描述与分析; 然后,为了证明基于深度学习方法的优越性以及分析损失函数的影响,开展了遥感图像融合实验; 最后,对基于深度学习的空谱图像融合方法进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡建文
汪泽平
胡佩
关键词 遥感图像空谱图像融合深度学习卷积神经网络    
Abstract

With the fast development and wide application of remote sensing technology, remote sensing images with higher quality are needed. However, it is difficult to directly acquire high-resolution, multispectral remote sensing images. To obtain high-quality images by integrating the information from different imaging sensors, pansharpening technology emerged. Pansharpening is an effective method used to obtain multispectral images with high spatial resolution. Many scholars have studied this method and obtained fruitful achievements. In recent years, deep learning theory has developed rapidly and has been widely applied in pansharpening. This study aims to systematically introduce the progress in pansharpening and promote its development. To this end, this study first introduced the traditional, classical pansharpening methods, followed by commonly used remote sensing satellites. Then, this study elaborated on the pansharpening methods based on deep learning from the perspective of supervised learning, unsupervised learning, and semi-supervised learning. After that, it described and analyzed loss functions. To demonstrate the superiority of the pansharpening methods based on deep learning and analyze the effects of loss functions, this study conducted remote sensing image fusion experiments. Finally, this study presented the future prospects of the pansharpening methods based on deep learning.

Key wordsremote sensing image    pansharpening    deep learning    convolutional neural network
收稿日期: 2021-12-13      出版日期: 2023-03-20
ZTFLH:  TP391.4  
基金资助:国家自然科学基金项目“高效多任务高光谱遥感图像超分辨率及质量评价研究”(62271087);湖南省自然科学基金项目“基于动态卷积神经网络的遥感图像融合”(2021JJ40609)
作者简介: 胡建文(1985-),男,副教授,研究方向为图像处理、深度学习和稀疏表示。Email: hujianwen1@163.com
引用本文:   
胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021433      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/1
卫星名称及图像 波段数 空间分辨率/m 光谱范围/nm 重访周期/d
GaoFen-1 PAN 1 2 450~900 4
MS 4 8 蓝光: 450~520,绿光: 520~590,
红光: 630~690,近红外: 770~890
GaoFen-2 PAN 1 1 450~900 5
MS 4 4 蓝光: 450~520,绿光: 520~590,
红光: 630~690,近红外: 770~890
GeoEye-1 PAN 1 0.46 450~800 3
MS 4 1.84 蓝光: 450~510,绿光: 510~580,
红光: 655~690,近红外: 780~920
IKONOS PAN 1 1 526~929 3
MS 4 4 蓝光: 445~516,绿光: 506~595,
红光: 632~698,近红外: 757~853
QuickBird PAN 1 0.61 405~1 053 1~6
MS 4 2.44 蓝光: 430~545,绿光: 466~620,
红光: 590~710,近红外: 715~918
WorldView-2 PAN 1 0.5 450~800 1.1
MS 8 2 蓝光: 450~510,绿光: 510~580,
红光: 630~690,近红外: 770~895,
海岸: 400~450,黄色: 585~625,
红色边缘: 705~745,近红外2: 860~1 040
WorldView-3 PAN 1 0.31 450~800 1
MS 8 1.24 蓝光: 445~517,绿光: 507~586,
红光: 626~696,近红外: 765~899,
海岸: 397~454,黄色: 580~629,
红色边缘: 698~749,近红外2: 857~1 039
Tab.1  常用卫星基本参数
Fig.1  基于深度学习的空谱遥感图像融合方法分类
Fig.2  基于监督学习的空谱遥感图像融合
方法类别 主要网络结构 特点
残差学习方法 采用残差连接,提高了信息的流通,避免了由于网络过深所引起的梯度消失问题和退化问题
密集连接方法 密集网络作为基础网络,采用密集连接来加强信息的传递
注意力机制方法 采用注意力机制自适应调节重要信息,提高特征提取的准确率
双分支网络方法 采用2个分支分别提取全色图像和多光谱图像的特征,然后利用融合网络融合所提取的特征
金字塔网络方法 利用金字塔网络对输入图像从低空间分辨率到高空间分辨率(或从高空间分辨率到低空间分辨率)提取不同尺度特征
编码-解码网络方法 由编码器和解码器构成的对称网络,编码器提取不同尺度特征,解码器还原各尺度信息
两阶段网络方法 2个阶段都有着各自任务,发挥不同作用
多尺度卷积核方法 采用多个大小不同的卷积核对图像分别进行特征提取以获得不同感受野的特征信息
Tab.2  各类监督学习空谱图像融合算法比较
Fig.3  生成式对抗网络融合结构
算法 Q SAM ERGAS SCC QN QNR
GS 0.816 8 6.711 1 4.580 6 0.827 3 0.820 7 0.867 7
BDSD 0.853 8 8.081 8 4.733 2 0.830 7 0.858 3 0.896 5
GLP 0.866 9 6.432 2 4.125 0 0.849 9 0.872 1 0.800 4
PNN 0.931 1 5.089 0 2.979 8 0.930 6 0.929 5 0.913 0
PanNet 0.938 2 4.847 9 2.851 7 0.935 1 0.935 9 0.929 0
DCCNP 0.935 1 5.076 3 2.951 5 0.935 8 0.933 6 0.915 2
RSIFNN 0.934 7 5.132 3 2.917 3 0.930 1 0.933 4 0.928 8
TFNet 0.941 6 4.613 7 2.774 3 0.943 1 0.939 9 0.918 6
MSDCNN 0.935 1 4.939 9 2.891 9 0.936 3 0.933 2 0.928 7
NLRNet 0.943 3 4.360 2 2.929 6 0.948 3 0.939 9 0.943 3
MDCNN 0.941 6 4.365 5 2.706 3 0.947 9 0.940 1 0.948 8
SDS 0.948 3 4.348 1 2.596 9 0.951 7 0.946 4 0.955 6
Tab.3  图像融合算法性能比较
融合网络 类别 损失函数 Q SAM ERGAS SCC QN QNR
PNN 空间损失 MSE 0.931 1 5.089 0 2.979 8 0.930 6 0.929 5 0.913 0
MAE 0.929 1 5.133 6 3.033 7 0.928 7 0.927 6 0.895 6
SSIM 0.821 6 15.413 1 9.500 0 0.923 6 0.675 7 0.814 5
MSE+SSIM 0.938 1 5.131 1 2.984 0 0.931 0 0.934 6 0.932 9
MAE+SSIM 0.937 2 5.066 7 2.964 4 0.930 9 0.934 8 0.926 6
光谱损失 SAM 0.566 2 4.712 8 8.928 9 0.503 4 0.539 0 0.641 0
空谱损失 MSE+SAM 0.878 7 5.088 3 3.594 5 0.916 6 0.877 6 0.867 1
MAE+SAM 0.928 1 5.061 6 3.035 3 0.928 3 0.927 1 0.900 7
MSE+SAM+SSIM 0.937 7 5.015 0 2.977 7 0.931 4 0.933 9 0.928 2
MAE+SAM+SSIM 0.934 1 5.146 0 3.020 2 0.925 5 0.931 5 0.923 4
Tab.4  不同损失函数性能比较
[1] 肖亮, 刘鹏飞, 李恒. 多源空—谱遥感图像融合方法进展与挑战[J]. 中国图象图形学, 2020, 25(5):851-863.
Xiao L, Liu P F, Li H. Progress and challenges in the fusion of multisource spatial-spectral remote sensing images[J]. Journal of Image and Graphics, 2020, 25(5):851-863.
[2] Ghassemian H. A review of remote sensing image fusion methods[J]. Information Fusion, 2016, 32:75-89.
doi: 10.1016/j.inffus.2016.03.003
[3] 张丽霞, 曾广平, 宣兆成. 多源图像融合方法的研究综述[J]. 计算机工程与科学, 2021:1-14.
Zhang L X, Zeng G P, Xuan Z C. A survey of fusion methods for multi-source image[J]. Computer Engineering and Science, 2021:1-14.
[4] 杨丽萍, 马孟, 谢巍, 等. 干旱区Landsat8全色与多光谱数据融合算法评价[J]. 国土资源遥感, 2019, 31(4):11-19.doi:10.6046/gtzyyg.2019.04.02.
doi: 10.6046/gtzyyg.2019.04.02
Yang L P, Ma M, Xie W, et al. Fusion algorithm evaluation of Landsat8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land and Resources, 2019, 31(4):11-19.doi:10.6046/gtzyyg.2019.04.02.
doi: 10.6046/gtzyyg.2019.04.02
[5] Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications:A meta-review[J]. Remote Sensing of Environment, 2020, 236:111402-111420.
doi: 10.1016/j.rse.2019.111402
[6] 刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.20200372.
doi: 10.6046/zrzyyg.20200372
Liu W J, Gao J K, Qu H C, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3):97-106.doi:10.6046/zrzyyg.20200372.
doi: 10.6046/zrzyyg.20200372
[7] 王琳, 李迅, 包云轩, 等. 遥感技术在交通气象灾害监测中的应用进展[J]. 国土资源遥感, 2018, 30(4):1-7.doi:10.6046/gtzyyg.2018.04.01.
doi: 10.6046/gtzyyg.2018.04.01
Wang L, Li X, Bao Y X, et al. Research progress of remote sensing application on transportation meteorological disasters[J]. Remote Sensing and for Land and Resources, 2018, 30(4):1-7.doi:10.6046/gtzyyg.2018.04.01.
doi: 10.6046/gtzyyg.2018.04.01
[8] 王洪斌, 肖嵩, 曲家慧, 等. 基于多分支CNN高光谱与全色影像融合处理[J]. 光学学报, 2021, 41(7):55-63.
Wang H B, Xiao S, Qu J H, et al. Pansharpening based on multi-branch CNN[J]. Acta Optica Sinica, 2021, 41(7):55-63.
[9] 张良培, 沈焕锋. 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016, 20(5):1050-1061.
Zhang L P, Shen H F. Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016, 20(5):1050-1061.
[10] 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1):148-166.
Li S T, Li C Y, Kang X D. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1):148-166.
[11] 张立福, 彭明媛, 孙雪剑, 等. 遥感数据融合研究进展与文献定量分析(1992—2018)[J]. 遥感学报, 2019, 23(4):603-619.
Zhang L F, Peng M Y, Sun X J, et al. Progress and bibliometric analysis of remote sensing data fusion methods (1992—2018)[J]. Journal of Remote Sensing, 2019, 23(4):603-619.
[12] Meng X, Shen H, Li H, et al. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis:Practical discussion and challenges[J]. Information Fusion, 2019, 46:102-113.
doi: 10.1016/j.inffus.2018.05.006
[13] Javan F D, Samadzadegan F, Mehravar S, et al. A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171:101-117.
doi: 10.1016/j.isprsjprs.2020.11.001
[14] Vivone G, Mura M D, Garzelli A, et al. A new benchmark based on recent advances in multispectral pansharpening:Revisiting pansharpening with classical and emerging pansharpening methods[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 9(1):53-81.
doi: 10.1109/MGRS.6245518
[15] Huang W, Xiao L, Wei Z, et al. A new pan-sharpening method with deep neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5):1037-1041.
doi: 10.1109/LGRS.2014.2376034
[16] Masi G, Cozzolino D, Verdoliva L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7):594-615.
doi: 10.3390/rs8070594
[17] Shahdoosti H R, Ghassemian H. Combining the spectral PCA and spatial PCA fusion methods by an optimal filter[J]. Information Fusion, 2016, 27:150-160.
doi: 10.1016/j.inffus.2015.06.006
[18] Laben C A, Brower B V. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening:U.S.,US09/069232[P]. 2000-01-04.
[19] Ghahremani M, Ghassemian H. Nonlinear IHS:A promising method for pan-sharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1606-1610.
doi: 10.1109/LGRS.2016.2597271
[20] Garzelli A, Nencini F, Capobianco L. Optimal MMSE pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 46(1):228-236.
doi: 10.1109/TGRS.2007.907604
[21] Aiazzi B, Alparone L, Baronti S, et al. MTF-tailored multiscale fusion of high-resolution MS and pan imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(5):591-596.
doi: 10.14358/PERS.72.5.591
[22] Vivone G, Restaino R, Chanussot J. Full scale regression-based injection coefficients for panchromatic sharpening[J]. IEEE Transactions on Image Processing, 2018, 27(7):3418-3431.
doi: 10.1109/TIP.2018.2819501 pmid: 29671744
[23] Khan M M, Chanussot J, Condat L, et al. Indusion:Fusion of multispectral and panchromatic images using the induction scaling technique[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1):98-102.
doi: 10.1109/LGRS.2007.909934
[24] Dong L, Yang Q, Wu H, et al. High quality multi-spectral and panchromatic image fusion technologies based on curvelet transform[J]. Neurocomputing, 2015, 159:268-274.
doi: 10.1016/j.neucom.2015.01.050
[25] El-Mezouar M C, Kpalma K, Taleb N, et al. A pan-sharpening based on the non-subsampled contourlet transform:Application to WorldView-2 imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5):1806-1815.
doi: 10.1109/JSTARS.4609443
[26] 曹义亲, 杨世超, 谢舒慧. 基于NSST的PCNN-SR卫星遥感图像融合方法[J]. 航天控制, 2020, 38(2):44-50.
Cao Y Q, Yang S C, Xie S H. Satellite remote sensing image fusion method based on NSST and PCNN-SR[J]. Aerospce Control, 2020, 38(2):44-50.
[27] 吴一全, 王志来. 混沌蜂群优化的NSST域多光谱与全色图像融合[J]. 遥感学报, 2017, 21(4):549-557.
Wu Y Q, Wang Z L. Multispectral and panchromatic image fusion using chaotic Bee Colony optimization in NSST domain[J]. Journal of Remote Sensing, 2017, 21(4):549-557.
[28] Li S, Yang B. A new pan-sharpening method using a compressed sensing technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 49(2):738-746.
doi: 10.1109/TGRS.2010.2067219
[29] Yin H. PAN-guided cross-resolution projection for local adaptive sparse representation-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4938-4950.
doi: 10.1109/TGRS.36
[30] 李成轶, 田淑芳. 基于字典学习的遥感影像超分辨率融合方法[J]. 国土资源遥感, 2017, 29(1):50-56.doi:10.6046/gtzyyg.2017.01.08.
doi: 10.6046/gtzyyg.2017.01.08
Li C Y, Tian S F. Super-resolution fusion method for remote sensing image based on dictionary learning[J]. Remote Sensing and for Land and Resources, 2017, 29(1):50-56.doi:10.6046/gtzyyg.2017.01.08.
doi: 10.6046/gtzyyg.2017.01.08
[31] Yin H. Sparse representation based pansharpening with details injection model[J]. Signal Processing, 2015, 113:218-227.
doi: 10.1016/j.sigpro.2014.12.017
[32] Li S, Yin H, Fang L. Remote sensing image fusion via sparse representations over learned dictionaries[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9):4779-4789.
doi: 10.1109/TGRS.2012.2230332
[33] Scarpa G, Vitale S, Cozzolino D. Target-adaptive CNN-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9),5443-5457.
doi: 10.1109/TGRS.36
[34] Wei Y, Yuan Q, Shen H, et al. Boosting the accuracy of multispectral image pansharpening by learning a deep residual network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10),1795-1799.
doi: 10.1109/LGRS.2017.2736020
[35] Yang J, Fu X, Hu Y, et al. PanNet:A deep network architecture for pan-sharpening[C]// Proceedings of the IEEE International Conference on Computer Vision.IEEE,Venice,Italy, 2017:5449-5457.
[36] Zhang H, Ma J. GTP-PNet:A residual learning network based on gradient transformation prior for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172:223-239.
doi: 10.1016/j.isprsjprs.2020.12.014
[37] Yang Y, Tu W, Huang S, et al. PCDRN:Progressive cascade deep residual network for pansharpening[J]. Remote Sensing, 2020, 12(4):676.
doi: 10.3390/rs12040676
[38] Huang W, Feng J, Wang H, et al. A new architecture of densely connected convolutional networks for pan-sharpening[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):242.
doi: 10.3390/ijgi9040242
[39] Peng J, Liu L, Wang J, et al. PSMD-Net:A novel pan-sharpening method based on a multiscale dense network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6):4957-4971.
doi: 10.1109/TGRS.2020.3020162
[40] Luo S, Zhou S, Qi Y. CSAFNET:Channel similarity attention fusion network for multispectral pansharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2020.
[41] 孔爱玲, 张承明, 李峰, 等. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2):47-55.doi:10.6046/zrzyyg.2021179.
doi: 10.6046/zrzyyg.2021179
Kong A L, Zhang C M, Li F, et al. Knowledge-based remote sensing imagery fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2):47-55.doi:10.6046/zrzyyg.2021179.
doi: 10.6046/zrzyyg.2021179
[42] Jiang M, Shen H, Li J, et al. A differential information residual convolutional neural network for pansharpening[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163:257-271.
doi: 10.1016/j.isprsjprs.2020.03.006
[43] Lei D, Chen H, Zhang L, et al. NLRNet:An efficient nonlocal attention resnet for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5401113.
[44] Shao Z, Cai J. Remote sensing image fusion with deep convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(5),1656-1669.
doi: 10.1109/JSTARS.4609443
[45] Liu X, Liu Q, Wang Y. Remote sensing image fusion based on two-stream fusion network[J]. Information Fusion, 2020,55,1-15.
[46] Fu S, Meng W, Jeon G, et al. Two-path network with feedback connections for pan-sharpening in remote sensing[J]. Remote Sensing, 2020, 12(10),1674.
[47] He L, Xi D, Li J, et al. A spectral-aware convolutional neural network for pansharpening[J]. Applied Sciences, 2020, 10(17),5809.
[48] Zhang Y, Liu C, Sun M, et al. Pan-sharpening using an efficient bidirectional pyramid network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8),5549-5563.
doi: 10.1109/TGRS.36
[49] Fang S, Wang X, Zhang J, et al. Pan-sharpening based on parallel pyramid convolutional neural network[C]// IEEE International Conference on Image Processing (ICIP), 2020:453-457.
[50] 方帅, 方赛华, 姚宏亮. 基于深度金字塔网络的Pan-Sharpening算法[J]. 计算机辅助设计与图形学学报, 2019, 31(10):1831-1837.
Fang S, Fang S H, Yao H L. Pan-sharpening based on a deep pyramid network[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(10):1831-1837.
[51] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015:234-241.
[52] Yao W, Zeng Z, Lian C, et al. Pixel-wise regression using U-Net and its application on pansharpening[J]. Neurocomputing, 2018, 312:364-371.
doi: 10.1016/j.neucom.2018.05.103
[53] Wang W, Zhou Z, Liu H, et al. MSDRN:Pansharpening of multispectral images via multi-scale deep residual network[J]. Remote Sensing, 2021, 13(6):1200.
doi: 10.3390/rs13061200
[54] Lai Z, Chen L, Jeon G, et al. Real-time and effective pan-sharpening for remote sensing using multi-scale fusion network[J]. Journal of Real-Time Image Processing, 2021:1-17.
[55] Benzenati T, Kallel A, Kessentini Y. Two stages pan-sharpening details injection approach based on very deep residual networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(6),4984-4992.
doi: 10.1109/TGRS.2020.3019835
[56] He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
[57] Hu J, Du C, Fan S. Two-stage pansharpening based on multi-level detail injection network[J]. IEEE Access, 2020, 8:156442-156455.
doi: 10.1109/Access.6287639
[58] Zhang L, Zhang J, Ma J, et al. SC-PNN:Saliency cascade convolutional neural network for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021:1-19.
[59] Li W, Liang X, Dong M. MDECNN:A multiscale perception dense encoding convolutional neural network for multispectral pan-sharpening[J]. Remote Sensing, 2021, 13(3):535.
doi: 10.3390/rs13030535
[60] Yuan Q, Wei Y, Meng X, et al. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3):978-989.
doi: 10.1109/JSTARS.4609443
[61] Hu J, Hu P, Kang X, et al. Pan-sharpening via multiscale dynamic convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(3):2231-2244.
doi: 10.1109/TGRS.36
[62] Guo Y, Ye F, Gong H. Learning an efficient convolution neural network for pansharpening[J]. Algorithms, 2019, 12(1):16.
doi: 10.3390/a12010016
[63] Hu J, Hu P, Wang Z P, et al. Spatial dynamic selection network for remote-sensing image fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:8013205.
[64] Hu J, He Z, Wu J. Deep self-learning network for adaptive pansharpening[J]. Remote Sensing, 2019, 11(20):2395.
doi: 10.3390/rs11202395
[65] Liu J, Feng Y, Zhou C, et al. PWnet:An adaptive weigh network for the fusion of panchromatic and multispectral images[J]. Remote Sensing, 2020, 12(17):2804.
doi: 10.3390/rs12172804
[66] Deng L J, Vivone G, Jin C, et al. Detail injection-based deep convolutional neural networks for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020:1-16.
[67] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11):139-144.
doi: 10.1145/3422622
[68] Ma J, Yu W, Chen C, et al. Pan-GAN:An unsupervised pan-sharpening method for remote sensing image fusion[J]. Information Fusion, 2020, 62:110-120.
doi: 10.1016/j.inffus.2020.04.006
[69] Zhou C, Zhang J, Liu J, et al. PercepPan:Towards unsupervised pan-sharpening based on perceptual loss[J]. Remote Sensing, 2020, 12(14):2318.
doi: 10.3390/rs12142318
[70] Xiong Z, Guo Q, Liu M, et al. Pan-sharpening based on convolutional neural network by using the loss function with no-reference[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:897-906.
doi: 10.1109/JSTARS.4609443
[71] Luo S, Zhou S, Feng Y, et al. Pansharpening via unsupervised convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:4295-4310.
doi: 10.1109/JSTARS.4609443
[72] 杜晨光, 胡建文, 胡佩. 半监督卷积神经网络遥感图像融合[J], 电子测量与仪器学报, 2021, 35(6):63-70.
Du C G, Hu J W, Hu P. Semi-supervised convolutional neural network remote sensing image fusion[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(6):63-70.
[73] Vitale S, Scarpa G. A detail-preserving cross-scale learning strategy for CNN-based pansharpening[J]. Remote Sensing, 2020, 12(3):348.
doi: 10.3390/rs12030348
[74] 黄珊珊, 江倩, 金鑫, 等. 结合双胞胎结构与生成对抗网络的半监督遥感图像融合[J]. 计算机辅助设计与图形学学报, 2021, 33(1):92-105.
Huang S S, Jiang Q, Jin X, et al. Semi-supervised remote sensing image fusion method combining siamese structure with generative adversarial networks[J]. Journal of Computer-Aided Design and Computer Graphics, 2021, 33(1):92-105.
doi: 10.3724/SP.J.1089.2021.18227
[75] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks[C]// International Conference on Machine Learning.PMLR, 2017:214-223.
[76] Mirza M, Osindero S. Conditional generative adversarial nets[J]. Computer Science, 2014:2672-2680.
[77] Liu X, Deng C, Zhao B, et al. Feature-level loss for multispectral pan-sharpening with machine learning[C]// IEEE International Geoscience and Remote Sensing Symposium(IGARSS).IEEE, 2018:8062-8065.
[78] Xu H, Ma J, Shao Z, et al. SDPNet:A deep network for pan-sharpening with enhanced information representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5):4120-4134.
doi: 10.1109/TGRS.2020.3022482
[79] Choi J S, Kim Y, Kim M. S3:A spectral-spatial structure loss for pan-sharpening networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(5):829-833.
doi: 10.1109/LGRS.8859
[80] Eghbalian S, Ghassemian H. Multi spectral image fusion by deep convolutional neural network and new spectral loss function[J]. International Journal of Remote Sensing, 2018, 39(12):3983-4002.
doi: 10.1080/01431161.2018.1452074
[81] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[C]// European Conference on Computer Vision.Springer,Cham, 2016:694-711.
[82] Bello J L G, Seo S, Kim M. Pan-sharpening with color-aware perceptual loss and guided re-colorization[C]// IEEE International Conference on Image Processing (ICIP).IEEE, 2020:908-912.
[83] Vivone G, Alparone L, Chanussot J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(5):2565-2586.
doi: 10.1109/TGRS.2014.2361734
[84] Alparone L, Aiazzi B, Baronti S, et al. Multispectral and panchromatic data fusion assessment without reference[J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(2):193-200.
doi: 10.14358/PERS.74.2.193
[1] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[2] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[3] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[4] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[5] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[6] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[7] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[8] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[9] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[10] 孙盛, 蒙芝敏, 胡忠文, 余旭. 多尺度轻量化CNN在SAR图像地物分类中的应用[J]. 自然资源遥感, 2023, 35(1): 27-34.
[11] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[12] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[13] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
[14] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[15] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发