Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (3): 17-26    DOI: 10.6046/zrzyyg.2021319
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
多特征准则融合的遥感图像脉冲噪声的识别处理
马晓剑1(), 赵法舜1, 刘艳宾2
1.东北林业大学理学院,哈尔滨 150040
2.中国地质大学(北京)地球科学与资源学院,北京 100083
Multi-feature fusion-based recognition and processing of impulse noise in remote sensing images
MA Xiaojian1(), ZHAO Fashun1, LIU Yanbin2
1. College of Science, Northeast Forestry University, Harbin 150040, China
2. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
全文: PDF(5845 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

消除脉冲噪声,获取高质量的遥感图像对应用研究有着重要意义。消除高密度脉冲噪声的同时,保持原有遥感图像的边缘细节信息一直是这一领域中的难题。该文认为被脉冲噪声冲击后的图像会出现不确定性突变,为了解决这种不确定性问题,基于证据理论,利用脉冲噪声的多个特征进行了不确定性建模; 融合了BJS散度和信度熵,给出新的权重分配,得到了新的概率指派; 再根据融合规则和概率转换,给出噪声与信号点的分类依据,从而有效降低了高度冲突发生的可能性。实验结果表明,在噪声密度达到90%以上时,该文提出的方法仍然有效,且在消噪后的遥感图像中对不同地物信息的细节保持良好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马晓剑
赵法舜
刘艳宾
关键词 证据理论不确定性建模融合规则高度冲突遥感图像    
Abstract

Eliminating impulse noise of high-quality remote sensing images is of great significance for applied research. It has always been a challenge to eliminate high-density impulse noise while remaining detailed information on edges in original remote sensing images. This study concluded that uncertain changes will appear when a remote sensing image is corrupted by impulse noise. Given this, an uncertainty model based on the evidence theory was constructed using multiple features of impulse noise. The BJS divergence and the reliability entropy were fused into the model to obtain new weights and a new probability assignment. Then, the classification between noise and signals was given according to fusion rules and probability transformation, thus effectively reducing the possibility of high-level conflicts. The experimental results show that the classification method proposed in this study is effective even when the noise density is up to over 90% and can well maintain detailed information on different ground objects in the denoised remote sensing images.

Key wordsevidence theory    uncertainty modeling    fusion rules    highly conflict    remote sensing image
收稿日期: 2021-09-30      出版日期: 2022-09-21
ZTFLH:  TP391.41  
基金资助:中央高校基本科研业务费专项资金项目“证据理论融合算法在图像处理中的研究与应用”(2572018BC21)
作者简介: 马晓剑(1977-),女,副教授,主要从事图像处理研究。Email: mxjzy@nefu.edu.cn
引用本文:   
马晓剑, 赵法舜, 刘艳宾. 多特征准则融合的遥感图像脉冲噪声的识别处理[J]. 自然资源遥感, 2022, 34(3): 17-26.
MA Xiaojian, ZHAO Fashun, LIU Yanbin. Multi-feature fusion-based recognition and processing of impulse noise in remote sensing images. Remote Sensing for Natural Resources, 2022, 34(3): 17-26.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021319      或      https://www.gtzyyg.com/CN/Y2022/V34/I3/17
Fig.1  不同像素的 d ( I , [ x , x ] )变化图
Fig.2   r g S I M i j关系曲线
Fig.3  多特征准则的建模与融合
Fig.4  不同地物信息的遥感图像
噪声
密度/%
ASMF-DBMR IBDND 本文算法
S S I M A R/% S S I M A R/% S S I M A R/%
10 0.980 99.61 0.981 99.43 0.981 99.65
20 0.958 99.59 0.930 99.38 0.960 99.33
30 0.932 99.57 0.784 99.20 0.926 99.38
40 0.899 99.52 0.548 98.48 0.896 99.48
50 0.863 99.51 0.315 96.93 0.851 99.62
60 0.817 99.48 0.166 94.12 0.804 99.76
70 0.750 99.59 0.089 89.59 0.756 99.76
80 0.655 99.62 0.045 84.14 0.678 99.73
90 0.531 99.82 0.018 75.81 0.553 99.84
Tab.1  不同算法的ARSSIM
Fig.5  噪声密度为50%时ASMF-DBER算法与本文算法的对比图
Fig.6  50%噪声密度下的局部信息对比图
Tab.2  噪声密度依次为10%,30%,50%,70%和90%的滤波效果对比图
Fig.7  遥感图像的PSNR对比图
[1] 赵洪臣, 周兴华, 彭聪, 等. 一种去除遥感影像混合噪声的集成BM3D方法[J]. 武汉大学学报(信息科学版), 2019, 44(6):925-932.
Zhao H C, Zhou X H, Peng C et al. An integrated BM3D method for removing mixed noise in remoting sensing image[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6):925-932.
[2] 汪贵平, 杜晶晶, 宋京, 等. 基于梯度倒数的无人机遥感图像融合滤波方法[J]. 科学技术与工程, 2018, 18(31):190-194.
Wang G P, Du J J, Song J, et al. A fusion filter method for unmanned aerial vehicle remote sensing image based on gradient inverse[J]. Science Technology and Engineering, 2018, 18(31):190-194.
[3] 朱建军, 周靖鸿, 周璀, 等. 一种新的去除遥感影像混合噪声组合滤波方法[J]. 武汉大学学报(信息科学版), 2017, 42(3):348-354.
Zhu J J, Zhou J H, Zhou C, et al. A new combination filtering method to removing mixed noise of remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3):348-354.
[4] 刘帅. 基于分层稀疏学习和协同表示的高光谱图像去噪和分类[D]. 西安: 西安电子科技大学, 2016.
Liu S. Hierarchical sparse learning and collaborative representation for hyperspectral imagery restoration and classification[D]. Xi’an: Xidian University, 2016.
[5] Srinivasan K S, Ebenezer D. A new fast and efficient decision-based algorithm for removal of high-density impulse noises[J]. IEEE Signal Processing Letters, 2007, 14(3):189-192.
doi: 10.1109/LSP.2006.884018
[6] Jayaraj V, Ebenezer D. A new switching-based median filtering scheme and algorithmfor removal of high density salt and pepper noise in images[J]. Journal on Advances in Signal Processing, 2010(1):409-413.
[7] Dempster A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2):325-339.
doi: 10.1214/aoms/1177698950
[8] 蒋雯. 邓鑫洋. D-S证据理论信息建模与应用[M]. 北京: 科学出版社, 2018.
Jiang W, Deng X Y. D-S evidence theory information modeling and application[M]. Beijing: Science Press, 2018.
[9] 童涛, 杨桄, 李昕, 等. 基于D-S证据理论的多特征融合SAR图像目标识别方法[J]. 国土资源遥感, 2013, 25(2):37-41.doi: 10.6046/gtzyyg.2013.02.07.
doi: 10.6046/gtzyyg.2013.02.07
Tong T, Yang G, Li X, et al. Recognition method of multi-feature fusion based on D-S evidence theory in SAR image[J]. Remote Sensing for Land and Resources, 2013, 25(2):37-41.doi: 10.6046/gtzyyg.2013.02.07.
doi: 10.6046/gtzyyg.2013.02.07
[10] 李华朋, 张树清, 孙妍. 证据理论结合遥感分类数据能力定量评价研究[J]. 国土资源遥感, 2011, 23(1):26-32.doi: 10.6046/gtzyyg.2011.01.05.
doi: 10.6046/gtzyyg.2011.01.05
Li H P, Zhang S Q, Sun Y. The quantitative evaluation of remoting sensing data for supervised evidential classification[J]. Remote sensing for Land and Resources, 2011, 23(1):26-32.doi: 10.6046/gtzyyg.2011.01.05.
doi: 10.6046/gtzyyg.2011.01.05
[11] Zhang Z, Han D, Dezert J, et al. A new adaptive switching median filter for impulse noise reduction with predetection based on evidential reasoning[J]. Signal Processing, 2018(147):173-189.
[12] Ng P E, Ma K. A switching median filter with boundary discriminative noise detection for extremely corrupted images[J]. IEEE Transactions on Image Processing, 2006, 15(6):1506-1516.
doi: 10.1109/TIP.2005.871129
[13] Han D, Dezert J, Duan Z. Evaluation of probability transformations of belief functions fordecision making[J]. IEEE Transactions on Systems,Man,and Cybernetics, 2016, 46(1):93-108.
[14] Irpino R V. Dynamic clustering of interval data using a wasserstein based distance[J]. Pattern Recognition Letter, 2008, 29(11):1648-1658.
doi: 10.1016/j.patrec.2008.04.008
[15] 钱晓亮, 郭雷, 余博. 基于目标尺度的自适应高斯滤波[J]. 计算机工程与应用, 2010, 46(12):14-16.
Qian X L, Guo L, Yu B. Adaptive Gaussian filter based on object scale[J]. Computer Engineering and Applications, 2010, 46(12):14-16.
[16] Xiao F. Multi-sensor data fusion based on the belief divergence measure of evidencesand the belief entropy[J]. Information Fusion, 2019,(46):23-32.
[17] Deng Y. Deng entropy[J]. Chaos,Solitons & Fractals, 2016(91):549-553.
[18] Jafar I F, AlNa’mneh R A, Darabkh K A. Efficient improvements on the BDND filtering algorithm for the removal of high-density impulse noise[J]. IEEE Transactios on Image Processing, 2013, 22(3):1223-1232.
[19] Zhao B, Zhong Y, Xia G S, et al. Dirichlet-derived multiple topic scene classification model fusing heterogeneous features for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4):2108-2123.
doi: 10.1109/TGRS.2015.2496185
[20] Zhao B, Zhong Y, Zhang L, et al. The fisher kernel coding framework for high spatial resolution scene classification[J]. Remote Sensing, 2016, 8(2):157-176.
doi: 10.3390/rs8020157
[21] Zhu Q, Zhong Y, Zhao B, et al. Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6):747-751.
doi: 10.1109/LGRS.2015.2513443
[22] Haidi I, Nicholas S P K, Theam F N. Simple adaptive median filter for the removal of impulse noise from highly corrupted images[J]. IEEE Transactions on Consumer Electronics, 2008, 544(4):1920-1927.
[1] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[2] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[3] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[4] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[5] 尚晓梅, 李佳田, 吕少云, 杨汝春, 杨超. 用于遥感图像超分辨率重建的残差对偶回归网络[J]. 自然资源遥感, 2022, 34(2): 112-120.
[6] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[7] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[8] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[9] 王小兵. 融合提升小波阈值与多方向边缘检测的矿区遥感图像去噪[J]. 国土资源遥感, 2020, 32(4): 46-52.
[10] 刘尚旺, 崔智勇, 李道义. 基于Unet网络多任务学习的遥感图像建筑地物语义分割[J]. 国土资源遥感, 2020, 32(4): 74-83.
[11] 李宇, 肖春姣, 张洪群, 李湘眷, 陈俊. 深度卷积融合条件随机场的遥感图像语义分割[J]. 国土资源遥感, 2020, 32(3): 15-22.
[12] 蔡之灵, 翁谦, 叶少珍, 简彩仁. 基于Inception-V3模型的高分遥感影像场景分类[J]. 国土资源遥感, 2020, 32(3): 80-89.
[13] 叶发茂, 罗威, 苏燕飞, 赵旭青, 肖慧, 闵卫东. 卷积神经网络特征在遥感图像配准中的应用[J]. 国土资源遥感, 2019, 31(2): 32-37.
[14] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[15] 葛芸, 江顺亮, 叶发茂, 姜昌龙, 陈英, 唐祎玲. 聚合CNN特征的遥感图像检索[J]. 国土资源遥感, 2019, 31(1): 49-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发