Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (3): 173-183    DOI: 10.6046/zrzyyg.2021325
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于遥感的柬埔寨金边市湿地景观对城市扩张时空响应
董丽1,2(), 安娜3, 孙根云1,2, 张爱竹1,2(), 矫志军1,2, 丁孙金衍1,2, 葛洁4
1.中国石油大学(华东) 海洋与空间信息学院,青岛 266580
2.青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266237
3.中国自然资源航空物探遥感中心,北京 100083
4.四川省科学技术研究院(四川省卫星应用技术中心),成都 610045
Spatiotemporal response of wetland landscape to urban expansion in Phnom Penh, Cambodia determined based on remote sensing
DONG Li1,2(), AN Na3, SUN Genyun1,2, ZHANG Aizhu1,2(), JIAO Zhijun1,2, DING Sunjinyan1,2, GE Jie4
1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Bejing 100083, China
4. Sichuan Institute of Land Science and Technology, Sichuan Center of Satellite Application Technology, Chengdu 610045, China
全文: PDF(4325 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

金边市是澜湄流域典型城市,在“一带一路”背景下经济迅速发展、城市范围不断扩张,对周边湿地侵占严重。为充分了解金边市湿地在城市扩张下的响应特点,基于2000—2020年共5期Landsat影像提取金边市土地利用信息,并从面积和空间分布、变化强度以及景观格局等多个维度分析了湿地景观和城市扩张用地时空变化特征,最后利用相关系数构建了两者间的定量关系。结果表明,2000—2020年间金边市建设用地和裸地由中心向外扩张,面积持续增加,2001—2005年间扩张最为强烈; 其空间结构更加集聚,形状更为复杂; 湿地面积持续减少,沼泽和水田向建设用地和裸地转换强烈,尤其是沼泽湿地转换面积达124.06 km2,导致约1/3的沼泽消失; 湿地景观格局趋于破碎化、规则化,连通度下降,其降温增湿、调节蓄洪等生态功能被削弱。金边市湿地变化与城市扩张显著相关,湿地与城市扩张用地在面积上的相关性高于0.97 (p<0.01),扩张强度和景观格局方面也有较强相关性。为促进城市可持续发展,城市扩张应当合理规划空间布局,以集约型发展为主,必要时优先利用水田,尽可能减少对沼泽湿地的侵占和破坏。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董丽
安娜
孙根云
张爱竹
矫志军
丁孙金衍
葛洁
关键词 湿地城市扩张景观格局柬埔寨金边    
Abstract

Phnom Penh is a typical city in the Lancang-Mekong River basin. It has rapidly developed and expanded under the Belt and Road Initiative and has continuously invaded its surrounding wetlands. To fully understand the response of the wetland landscape to the urban expansion in Phnom Penh, this study extracted the 2000—2020 land use data of this city from five phases of Landsat images, then analyzed the spatiotemporal characteristics of the changes in wetland landscapes and the land use for urban expansion from the aspects of area change, spatial distribution, change intensity, and landscape pattern, and finally established the quantitative relationships between the wetland landscape and the land use for urban expansion using the correlation coefficient. The results are as follows. The construction land and bare land in Phnom Penh had expanded outwards from the center, and their sizes had constantly increased during 2000—2020, especially during 2001—2005. Their spatial structures were increasingly concentrated, and the shapes were more complex. The wetland area continuously decreased, and the swamps and paddy fields were converted to construction land and bare land intensively. In particular, swamps with an area of 124.06 km2 were converted to construction land and bare land. In other words, about one-third of the swamps disappeared. The wetland landscape tended to be distributed in a fragmented and regularized manner. Its connectivity degree decreased and its ecological functions such as lowering the temperature, increasing the humidity, and regulating and storing floodwater were weakened. These changes in the wetland in Phnom Penh are significantly related to urban expansion, with a correlation coefficient in terms of area greater than 0.97 (p < 0.01). There is also a strong correlation between the intensity of the urban expansion and the wetland landscape pattern. To maintain the sustainable development of the city, it is necessary to reasonably plan the spatial layout in the process of urban expansion. The urban expansion should be conducted mainly through intensive development, paddy fields should be utilized first if necessary, and the occupation and destruction of swamps and wetlands should be avoided as much as possible.

Key wordswetland    urban expansion    landscape pattern    Phnom Penh, Cambodia
收稿日期: 2021-10-11      出版日期: 2022-09-21
ZTFLH:  P237  
  TP79  
基金资助:国家自然科学基金项目“高异质性滨海湿地盐沼植被环境响应机理与优化分类方法研究”(41801275);“复杂城市地表不透水面多源高分遥感成像机理与分层优化提取方法”(41971292);科技部国家重点研发计划项目“亚大热点区域生态系统遥感综合监测”(2019YFE0126700);国家自然科学基金项目“饮用水源地保护区环境风险源变化多尺度遥感探测机制与不确定性研究”(41871270);广东省省级科技计划项目(2018B020207002);广东省海洋经济发展(海洋六大产业)专项资金项目(GDNRC[2020]051)
通讯作者: 张爱竹
作者简介: 董 丽(1996-),女,硕士研究生,研究方向为湿地遥感。Email: dxywy1020@126.com
引用本文:   
董丽, 安娜, 孙根云, 张爱竹, 矫志军, 丁孙金衍, 葛洁. 基于遥感的柬埔寨金边市湿地景观对城市扩张时空响应[J]. 自然资源遥感, 2022, 34(3): 173-183.
DONG Li, AN Na, SUN Genyun, ZHANG Aizhu, JIAO Zhijun, DING Sunjinyan, GE Jie. Spatiotemporal response of wetland landscape to urban expansion in Phnom Penh, Cambodia determined based on remote sensing. Remote Sensing for Natural Resources, 2022, 34(3): 173-183.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021325      或      https://www.gtzyyg.com/CN/Y2022/V34/I3/173
Fig.1  研究区影像
影像时间 传感器 空间分辨率/m
2001.06.01 TM 30
2005.01.19 TM 30
2011.01.20 TM 30
2015.01.15 OLI 30
2020.01.13 OLI 30
Tab.1  Landsat影像数据
一级类别 二级类别 训练样本数量
自然湿地 河流 754
湖泊 939
沼泽 2 445
人工湿地 养殖池 293
水田 1 132
非湿地 建设用地 869
裸地 1 260
城市绿地 404
Tab.2  金边市景观分类体系
Fig.2  技术流程
Fig.3  方向示意图
景观指数 表达式 数学解释 生态含义
AWMFD A W M F D = i = 1 m j = 1 k 2 l n ( 0.25 C i j ) l n ( a i j ) ( a i j O ) i为斑块类型; m为景观中所有斑块类型的总数目; j为斑块数目; k为某一斑块类型中斑块的总数目; Cij为斑块的周长; aij为斑块的面积; O为景观的总面积 1≤AWMFD≤2,AWMFD越大,缀块形状越复杂
ED E D = j = 1 k e i j O ( 10000 ) eij为斑块的边缘长度 ED≥0,反映了破碎化程度和生境缀块之间的隔离程度,ED越大,湿地景观破碎化越严重
AI A I = g i i m a x g i i ( 100 ) gii为斑块类型i的像素之间的相似邻接数; m a x g i i为最大相似邻接数 0≤AI≤100,AI越大,同一类型的湿地越聚合
Tab.3  景观指数计算公式及生态含义
Fig.4  金边市景观2001—2020年面积变化
Fig.5  2001—2020年景观类型分布
景观类型 2001年
河流 养殖池 建设用地 裸地 城市绿地 湖泊 水田 沼泽
2020年 河流 32.508 0 0.006 3 0.436 5 0.018 0 0.000 9 0.103 5 1.211 4 3.045 6
养殖池 0.738 0 0.242 1 0.346 5 0.387 0 0.004 5 0.338 4 1.019 7 1.915 2
建设用地 0.988 2 0.549 0 36.578 7 2.075 4 0.527 4 4.511 7 63.586 8 98.894 1
裸地 0.287 1 0.109 8 1.544 4 0.454 5 0.020 7 1.454 4 24.424 3 22.319 1
城市绿地 0.378 0 0.009 9 0.848 7 0.009 9 0.408 6 0.954 0 0.889 2 2.844 0
湖泊 0.954 0 0.132 3 0.603 0 0.083 7 0.009 0 13.747 5 8.441 1 22.423 5
水田 0.288 9 0.531 0 2.364 3 0.585 0 0.037 8 0.925 2 101.132 1 20.703 6
沼泽 2.089 8 0.267 3 5.124 6 0.529 2 0.264 6 5.675 4 54.060 3 143.232 3
Tab.4  金边市2001—2020年景观类型转移矩阵
Fig.6  金边市景观变化强度
Fig.7  金边市景观不同方向变化强度
Fig.8  2000—2020年金边市类型水平上景观格局指数变化
湿地类型 面积 变化强度 ED AI AWMFD
建设用地 裸地 建设用地 裸地 建设用地 裸地 建设用地 裸地 建设用地 裸地
湖泊 0.841 0.830 0.961* 0.730 0.952* 0.923* 0.408 0.954* -0.937* 0.352
沼泽 -0.99 5 * * -0.996** -0.043 0.032 0.918* 0.889* -0.946* -0.428 0.562 0.741
养殖池 0.977** 0.980** 0.964* 0.969* 0.491 0.412 0.853 0.435 0.978** -0.090
水田 -0.991** 0.978** 0.239 -0.064 0.026 0.122 -0.845 -0.507 -0.269 -0.776
Tab.5  湿地与城市扩张用地相关性
[1] 杨永兴. 国际湿地科学研究的主要特点、进展与展望[J]. 地理科学进展, 2002, 21(2):111-120.
Yang Y X. Main characteristics,progress and prospect of international wetland science research[J]. Progress in Geography, 2002, 21(2):111-120.
[2] 张月, 张飞, 王娟, 等. 近40年艾比湖湿地自然保护区生态干扰度时空动态及景观格局变化[J]. 生态学报, 2017, 37(21):7082-7097.
Zhang Y, Zhang F, Wang J, et al. Analysis of the temporal and spatial dynamics of landscape patterns and hemeroby index of the Ebinur Lake Wetland Nature Reserve,Xinjiang,over the last 40 years[J]. Acta Ecologica Sinica, 2017, 37(21):7082-7097.
[3] Turner R K, van den Bergh J C J M, Söderqvist T, et al. Ecological-economic analysis of wetlands:Scientific integration for management and policy[J]. Ecological Economics, 2000, 35(1):7-23.
doi: 10.1016/S0921-8009(00)00164-6
[4] 赵欣胜, 崔丽娟, 李伟, 等. 吉林省湿地调蓄洪水功能分析及其价值评估[J]. 水资源保护, 2016, 32(4):27-33,66.
Zhao X S, Cui L J, Li W, et al. Flood storage function analysis and value assessment of wetlands in Jilin Province[J]. Water Resources Protection, 2016, 32(4):27-33,66.
[5] 王延吉, 神祥金, 吕宪国. 1980—2015年东北沼泽湿地景观格局及气候变化特征[J]. 地球与环境, 2020, 48(3):348-357.
Wang Y J, Shen X J, Lyu X G. Change characteristics of landscape pattern and climate in marsh areas of northeast China during 1980—2015[J]. Earth and Environment, 2020, 48(3):348-357.
[6] The UN Department of Economic and Social Affairs. 2018 of revision word urbanization prospects[R]. UN: New York, 2018.
[7] 谷雨, 闫敏, 李通, 等. 东南亚港口城市土地利用变化分析.遥感信息[J], 2021, 36(2):81-88.
Gu Y, Yan M, Li T, et al. Analysis of land use change in southeast Asian port cities[J]. Remote Sensing Information, 2021, 36(2):81-88.
[8] 海凯, 王思远, 马元旭, 等. “一带一路”沿线地区城市扩张和形态变化分析[J]. 地理学报, 2020, 75(10):2092-2108.
doi: 10.11821/dlxb202010005
Hai K, Wang S Y, Ma Y X, et al. Urban expansion and form changes along the Belt and Road Initiative[J]. Acta Geographica Sinica, 2020, 75(10):2092-2108.
[9] 禹丝思, 孙中昶, 郭华东, 等. 海上丝绸之路超大城市空间扩展遥感监测与分析[J]. 遥感学报, 2017, 21(2):169-181.
Yu S S, Sun Z C, Guo H D, et al. Monitoring and analyzing the spatial dynamics and patterns of megacities along the Maritime Silk Road[J]. Journal of Remote Sensing, 2017, 21(2):169-181.
[10] 韩瑞丹, 张丽, 郑艺, 等. 曼谷城市扩张生态环境效应[J]. 生态学报, 2017, 37(19):6322-6334.
Han R D, Zhang L, Zheng Y, et al. Urban expansion and its ecological environmental effects in Bangkok,Thailand[J]. Acta Ecologica Sinica, 2017, 37(19):6322-6334.
[11] 石小倩, 赵筱青, Jakariya M D, 等. 1980—2017年孟加拉国城市扩张的景观格局变化特征及其模式[J]. 水土保持通报, 2021, 41(2):275-283.
Shi X Q, Zhao X Q, Jakariya M D, et al. Characteristics and models of landscape pattern changes in urban expansion in Bangladesh during 1980—2017[J]. Bulletin of Soil and Water Conservation, 2021, 41(2):275-283.
[12] 柳钦火, 吴俊君, 李丽, 等. “一带一路”区域可持续发展生态环境遥感监测[J]. 遥感学报, 2018, 22(4):686-708.
Liu Q H, Wu J J, Li L, et al. Ecological environment monitoring for sustainable development goals in the Belt and Road region[J]. Journal of Remote Sensing, 2018, 22(4):686-708.
[13] 刘秋皇. 柬埔寨城市化发展战略研究[D]. 南京: 东南大学, 2016.
Liu Q H. Research on the urbanization development strategy of Cambodia[D]. Nanjing: Southeast University, 2016.
[14] Mulder V L, Bruin S, Schaepman M E, et al. The use of remote sensing in soil and terrain mapping:A review[J]. Geoderma, 2010, 162(1-2):1-19.
doi: 10.1016/j.geoderma.2010.12.018
[15] 梁铭哲. 1990—2018年京津冀城市群滨海湿地演变规律与利用程度评估[D]. 北京: 北京林业大学, 2020.
Liang M Z. Evolution rule and utilization assessment of coastal wetland in Beijing-Tianjin-Hebei urban agglomeration during 1990—2018[D]. Beijing: Beijing Forestry University, 2020.
[16] 张蔷, 鹿海峰, 赵文慧, 等. 2016—2018年北京城市湿地遥感监测分析[J]. 环境监控与预警, 2019, 11(5):91-95.
Zhang Q, Lu H F, Zhao W H, et al. Remote sensing monitoring and analysis of urban wetland in Beijing from 2016 to 2018[J]. Environmental Monitoring and Forewarning, 2019, 11(5):91-95.
[17] 张树苗, 白加德, 李夷平, 等. 城市化进程下北京市湿地面积变化研究[J]. 湿地科学, 2018, 16(1):30-32.
Zhang S M, Bai J D, Li Y P, et al. Change of wetlands’ area in Beijing under urbanization process[J]. Wetland Science, 2018, 16(1):30-32.
[18] 鞠永婧. 多尺度下快速城市化与湿地变化关系研究—以长三角城市群为例[D]. 上海: 华东师范大学, 2015.
Ju Y J. Exploring the relationship between rapid urbanization and wetland change:A case study of Yangtze River Delta[D]. Shanghai: East China Normal University, 2015.
[19] Mao D H, Wang Z M, Wu J G, et al. China’s wetlands loss to urban expansion[J]. Land Degradation and Development, 2018, 29(8):2644-2657.
doi: 10.1002/ldr.2939
[20] 娄艺涵, 张力小, 潘骁骏, 等. 1984年以来8个时期杭州主城区西部湿地格局研究[J]. 湿地科学, 2021, 19(2):247-254.
Lou Y H, Zhang L X, Pan X J, et al. Pattern of wetlands in the west of main city zone of Hangzhou for 8 periods since 1984[J]. Wetland Science, 2021, 19(2):247-254.
[21] Basu T, Das A, Pham Q B, et al. Development of an integrated peri-urban wetland degradation assessment approach for the Chatra Wetland in eastern India[J]. Scientific Reports, 2021, 11:4470.
doi: 10.1038/s41598-021-83512-6
[22] 吴思佳, 林金煌, 陈文惠, 等. 2000年以来4个时期闽三角城市群中的湿地格局及变化[J]. 湿地科学, 2018, 16(6):717-722.
Wu S J, Lin J H, Chen W H, et al. Patterns and changes of wetlands in the urban agglomeration of Min Delta in 2000,2005,2010 and 2015[J]. Wetland Science, 2018, 16(6):717-722.
[23] 宫兆宁, 张翼然, 宫辉力, 等. 北京湿地景观格局演变特征与驱动机制分析[J]. 地理学报, 2011, 66(1):77-88.
Gong Z N, Zhang Y R, Gong H L, et al. Evolution of wetland landscape pattern and its driving factors in Beijing[J]. Acta Geographica Sinica, 2011, 66(1):77-88.
[24] 李婧贤, 王钧, 杜依杭, 等. 快速城市化背景下珠江三角洲滨海湿地变化特征[J]. 湿地科学, 2019, 17(3):267-276.
Li J X, Wang J, Du Y H, et al. Change characteristics of coastal wetlands in the Pearl River Delta under rapid urbanization[J]. Wetland Science, 2019, 17(3):267-276.
[25] 谷雨. 海上丝绸之路沿线港口城市扩张和生态效益评价研究[D]. 泰安: 山东农业大学, 2020.
Gu Y. Research on port city expansion and ecological benefit evaluation along the Maritime Silk Road[D]. Taian: Shandong Agricultural University, 2020.
[26] San V, Spoann V, Schmidt J. Industrial pollution load assessment in Phnom Penh,Cambodia using an industrial pollution projection system[J]. Science of the Total Environment, 2018, 615:990-999.
doi: 10.1016/j.scitotenv.2017.10.006
[27] Mialhe F, Gunnell Y, Navratil O, et al. Spatial growth of Phnom Penh,Cambodia (1973—2015):Patterns,rates,and socio-ecological consequences[J]. Land Use Policy, 2019, 87:104061.
doi: 10.1016/j.landusepol.2019.104061
[28] 张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326.
Zhang L, Gong Z N, Wang Q W, et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images[J]. Journal of Remote Sensing, 2019, 23(2):313-326.
[29] 王正兴, 刘闯, Huete A. 植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J]. 生态学报, 2003, 23(5):979-987.
Wang Z X, Liu C, Huete A. From AVHRR-NDVI to MODIS-EVI:Advances in vegetation index research[J]. Acta Ecologica Sinica, 2003, 23(5):979-987.
[30] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
[31] 刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4):622-635.
Liu L, Kuang G Y. Overview of image textural feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4):622-635.
[32] Zhang A Z, Sun G Y, Ma P, et al. Coastal wetland mapping with Sentinel-2 MSI imagery based on gravitational optimized multilayer perceptron and morphological attribute profiles[J]. Remote Sensing, 2019, 11(8):952.
doi: 10.3390/rs11080952
[33] 鲍蕊, 夏俊士, 薛朝辉, 等. 基于形态学属性剖面的高光谱影像集成分类[J]. 遥感技术与应用, 2016, 31(4):731-738.
Bao R, Xia J S, Xue Z H, et al. Ensemble classification for hyperspectral imagery based on morphological attribute profiles[J]. Remote Sensing Technology and Application, 2016, 31(4):731-738.
[34] 邬建国. 景观生态学——格局、过程、尺度与等级[M]. 北京: 高等教育出版社, 2007.
Wu J G. Landscape ecological:Pattern,process,scale and hierarchy[M]. Beijing: Higher Education Press, 2007.
[35] 谢苗苗, 王仰麟, 付梅臣. 城市地表温度热岛影响因素研究进展[J]. 地理科学进展, 2011, 30(1):35-41.
Xie M M, Wang Y L, Fu M C. An overview and perspective about causative factors of surface urban heat island effects[J]. Progress in Geography, 2011, 30(1):35-41.
[36] 黄硕, 郭青海. 城市景观格局演变的水环境效应研究综述[J]. 生态学报, 2014, 34(12):3142-3150.
Huang S, Guo Q H. Research review on effects of urban landscape pattern changes on water environment[J]. Acta Ecologica Sinica, 2014, 34(12):3142-3150.
[37] 王伟武, 胡沾沾, 徐婷立, 等. 城市湿地空间社会—生态韧性规划策略研究[C]// 中国城市规划学会.面向高质量发展的空间治理——2020中国城市规划年会论文集. 北京: 中国建筑工业出版社, 2021:218-231.
Wang W W, Hu Z Z, Xu T L, et al. Urban wetland spatial society-ecological resilience planning strategy research[C]// Urban Planning Society of China.Spatial governance for high-quality develo-pment:Proceedings of Annual National Planning Conference 2020. Beijing: China Architecture and Building Press, 2021:218-231.
[38] Cao X, Onishi A, Chen J, et al. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data[J]. Landscape and Urban Planning, 2010, 96(4):224-231.
doi: 10.1016/j.landurbplan.2010.03.008
[39] Chang C R, Li M H, Chang S D. A preliminary study on the local cool-island intensity of Taipei City parks[J]. Landscape and Urban Planning, 2006, 80(4):386-395.
doi: 10.1016/j.landurbplan.2006.09.005
[1] 王珏, 郭振, 张志卫, 徐文学, 许昊. 基于倾斜摄影测量的三维景观指数构建——以山东田横岛为例[J]. 自然资源遥感, 2023, 35(2): 112-121.
[2] 邢梓涵, 李晓燕, 石振宇, 古丽娜尔·索尔达汗, 吴海涛. 辽中南城市群城市扩张及其碳排放效应[J]. 自然资源遥感, 2022, 34(4): 272-279.
[3] 韦嫦, 付波霖, 覃娇玲, 王雅南, 陈智瀚, 刘兵. 基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测[J]. 自然资源遥感, 2022, 34(2): 251-260.
[4] 何陈临秋, 程博, 陈金奋, 张晓平. 基于GF-3全极化SAR数据的滨海湿地信息提取方法[J]. 自然资源遥感, 2021, 33(4): 105-110.
[5] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[6] 王美雅, 徐涵秋. 中外超大城市热岛效应变化对比研究[J]. 自然资源遥感, 2021, 33(4): 200-208.
[7] 胡苏李扬, 李辉, 顾延生, 黄咸雨, 张志麒, 汪迎春. 基于高分辨率遥感影像的神农架大九湖湿地土地利用类型变化及其驱动力分析——来自长时间尺度多源遥感信息的约束[J]. 国土资源遥感, 2021, 33(1): 221-230.
[8] 王小龙, 闫浩文, 周亮, 张黎明, 党雪薇. 利用SVM分类Landsat影像的朝鲜主要城市建设用地时空特征分析[J]. 国土资源遥感, 2020, 32(4): 163-171.
[9] 梅昭容, 李云驹, 康翔, 魏善宝, 潘剑君. 基于移动窗口分析法的矿区景观格局时空演变研究[J]. 国土资源遥感, 2019, 31(4): 60-68.
[10] 吕金霞, 蒋卫国, 王文杰, 刘颖慧, 邓越, 王晓雅. 基于移动窗口法雄安新区湿地景观演变及其与人为干扰间的关系[J]. 国土资源遥感, 2019, 31(2): 140-148.
[11] 钱志友, 符海月, 王妍, 张祎婷. 2004—2016年南京市城市扩张及形态演变特征[J]. 国土资源遥感, 2019, 31(2): 149-156.
[12] 刘昭华, 张春艳. 开封市城市扩张动态监测及驱动因子分析[J]. 国土资源遥感, 2018, 30(4): 193-199.
[13] 翟俊, 侯鹏, 赵志平, 肖如林, 颜长珍, 聂学敏. 青海湖流域景观格局空间粒度效应分析[J]. 国土资源遥感, 2018, 30(3): 159-166.
[14] 刘佳, 辛鑫, 刘斌, 邸凯昌, 岳宗玉, 王承安. 基于DMSP/OLS夜间灯光影像的2000—2013年鄂尔多斯市城市扩张遥感制图与驱动因子分析[J]. 国土资源遥感, 2018, 30(1): 166-172.
[15] 丁宇雪, 初禹, 薛广垠. 利用国产卫星数据开展湿地调查——以黑龙江省为例[J]. 国土资源遥感, 2017, 29(s1): 151-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发