Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 41-48    DOI: 10.6046/zrzyyg.2022048
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于高分六号卫星数据的红树林提取方法
许青云(), 李莹, 谭靖, 张哲
北京航天泰坦科技股份有限公司,北京 100070
Information extraction method of mangrove forests based on GF-6 data
XU Qingyun(), LI Ying, TAN Jing, ZHANG Zhe
Beijing Aerospace TITAN Technology Co. Ltd., Beijing 100070, China
全文: PDF(2796 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

红树林具有定期被潮水淹没的特点,这个特点对于利用遥感技术手段提取红树林来说既是机遇也是挑战。为探究在任意潮汐条件下,高分六号(GF-6)卫星数据的红边波段在红树林提取上的贡献度,以海南省最大的红树林区域东寨港东南区为研究区域,利用高分二号(GF-2)卫星数据获取标准样本点。以研究区的标准样本点和高分六号数据为基础,构建典型地物反射光谱曲线图,由植被强吸收的波段建立基线,基线之上反射率的平均值定义了适用于高分六号卫星数据的潮间红树林指数(intertidal mangrove forest index,IMFI),同时建立了红边归一化植被指数(red-edge normalized difference vegetation index,RENDVI),这2种指数与归一化植被指数(normalized difference vegetation index,NDVI)和归一化水体指数(normalized difference water index,NDWI)等常用指数通过箱线图进行对比分析,并基于IMFI和RENDVI构建决策树模型对研究区的典型红树林进行提取,提取结果与高分二号遥感数据目视解译提取的样本进行精度验证。结果表明: ①红树林周期性被潮水淹没的特点,使得潮间红树林的反射光谱曲线在水体与红树林的标准光谱曲线之间分布,且相对分散; ②IMFI和RENDVI可反映红边波段与近红外波段反射光谱的差异性,能够更好地对潮间红树林、红树林和水体进行分离; ③基于IMFI和RENDVI构建的决策树模型可有效提取红树林分布信息,其总体精度为0.95,Kappa系数为0.90。红边波段的引入在红树林提取上发挥了重要作用,具有很大的应用潜力,为国产红边卫星数据在生态方面的应用提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许青云
李莹
谭靖
张哲
关键词 高分六号红边波段红树林指数反射光谱东寨港    
Abstract

Mangrove forests are periodically inundated by tidal water. This characteristic opens up an opportunity but also poses a challenge for the information extraction of mangrove forests using remote sensing technology. To explore the contribution of the red-edge band of GF-6 satellite data in information extraction of mangrove forests under the condition of random tides, this study investigated the southeastern Dongzhaigang area-the largest mangrove forest area in Hainan Province and obtained standard samples using the GF-2 satellite data. The reflectance spectral curves of typical surface features were constructed based on the standard samples and the GF-6 satellite data. Then, a baseline was established based on the bands strongly absorbed by vegetation, and the intertidal mangrove forest index (IMFI) applicable to the GF-6 satellite data was defined using the average reflectance of bands above the baseline. Meanwhile, the red-edge normalized difference vegetation index (RENDVI) was also established. The two indices were compared with commonly used indices, such as the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), using box-whisker plots. Then, using the decision tree model constructed based on IMFI and RENDVI, information on typical mangrove forest in the study area were extracted. The precision of the extraction results was verified through comparison with visual interpretation results of the samples extracted from the GF-2 satellite data. The results show that: ① Because mangrove forests are periodically inundated by tidal water, the reflectance spectral curves of intertidal mangrove forests were relatively scattered between the standard spectral curves of water bodies and mangrove forests; ② IMFI and RENDVI can reflect the differences in the reflectance spectra of the red-edge and near-infrared bands and thus effectively separated the intertidal mangrove forests, mangrove forests, and water bodies; ③ The decision tree model constructed based on IMFI and RENDVI can effectively extract the distribution information of the mangrove forests, with an overall accuracy of 0.95 and a Kappa coefficient of 0.90. The introduction of the red-edge band plays an important role in the information extraction of mangrove forests and has great potential for application. This study can be used as a reference for the ecological applications of red-edge data from domestic satellites.

Key wordsGF-6 satellite    red-edge band    mangrove forest index    reflectance spectrum    Dongzhaigang
收稿日期: 2022-02-11      出版日期: 2023-03-20
ZTFLH:  TP79  
基金资助:海南省重大科技计划项目“海量遥感数据库模块与生态监管集成模块代码开发”(ZDKJ2019006)
作者简介: 许青云(1989-),女,硕士,高级工程师,注册测绘师,主要从事定量遥感、图像分析处理、3S软件产品设计和应用研究。Email: nishang_dale@126.com
引用本文:   
许青云, 李莹, 谭靖, 张哲. 基于高分六号卫星数据的红树林提取方法[J]. 自然资源遥感, 2023, 35(1): 41-48.
XU Qingyun, LI Ying, TAN Jing, ZHANG Zhe. Information extraction method of mangrove forests based on GF-6 data. Remote Sensing for Natural Resources, 2023, 35(1): 41-48.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022048      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/41
Fig.1  研究区位置
卫星 传感器 采集时间 产品序列号 11: 00
对应潮
高/cm
12: 00
对应潮
高/cm
GF-2 PMS1 2020-08-10
11: 29: 34
4982331 113 130
2020-08-10
11: 29: 37
4982332
PMS2 2020-08-10
11: 29: 34
4982394
2020-08-10
11: 29: 37
4982395
GF-6 WFV 2021-01-14
11: 44: 49
1120071535 181 164
Tab.1  卫星数据描述
Fig.2  技术路线
Fig.3  研究区典型地物反射光谱曲线
Fig.4  构建IMFI的基线理论图
Fig.5  红树林、潮间红树林和水体各指数值的箱线图
Fig.6  红树林提取结果
覆盖类型 分类结果
红树林 其他 总计 生产者精度/%
红树林 89 4 93 96
其他 5 91 96 95
总计 94 95 189
用户精度/% 95 96
Tab.2  红树林提取精度统计
[1] 张乔民, 隋淑珍. 中国红树林湿地资源及其保护[J]. 自然资源学报, 2001, 16(1):28-36.
Zhang Q M, Sui S Z. The mangrove wetland resources and their conservation in China[J]. Journal of Natural Resources, 2001, 16(1):28-36.
doi: 10.11849/zrzyxb.2001.01.005
[2] 章恒, 王世新, 周艺, 等. 多源遥感影像红树林信息提取方法比较[J]. 湿地科学, 2015, 13(2):145-152.
Zhang H, Wang S X, Zhou Y, et al. Comparison of different metho-ds of mangrove extraction from multi-source remote sensing images[J]. Wetland Science, 2015, 13(2):145-152.
[3] 但新球, 廖宝文, 吴照柏, 等. 中国红树林湿地资源、保护现状和主要威胁[J]. 生态环境学报, 2016, 25(7):1237-1243.
doi: 10.16258/j.cnki.1674-5906.2016.07.021
Dan X Q, Liao B W, Wu Z B, et al. Resources,conservation status and main threats of mangrove wetlands in China[J]. Ecology and Environmental Sciences, 2016, 25(7):1237-1243.
[4] Heumann B W. An object-based classification of mangroves using a hybrid decision tree-support vector machine approach[J]. Remote Sensing, 2011, 3(11):2440-2460.
doi: 10.3390/rs3112440
[5] Cardenas N Y, Joyce K E, Maier S W. Monitoring mangrove forests: Are we taking full advantage of technology?[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 63(7):1-14.
doi: 10.1016/j.jag.2017.07.004
[6] Heumann B W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities[J]. Progress in Physical Geography: Earth and Environment, 2011, 35(1):87-108.
doi: 10.1177/0309133310385371
[7] Wang T, Zhang H S, Lin H, et al. Textural-spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery[J]. Remote Sensing, 2016, 8(1):24.
doi: 10.3390/rs8010024
[8] Mondal P, Liu X, Fatoyinbo T E, et al. Evaluating combinations of Sentinel-2 data and machine-learning algorithms for mangrove mapping in West Africa[J]. Remote Sensing, 2019, 11(24):2928.
doi: 10.3390/rs11242928
[9] 蒙良莉. 基于哨兵多源遥感数据的红树林信息提取算法研究[D]. 南宁: 南宁师范大学, 2020.
Meng L L. Mangrove information extraction algorithm based on multi-source remote sensing data of sentinel[D]. Nanning: Nanning Normal University, 2020.
[10] Jia M M, Wang Z M, Wang C, et al. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery[J]. Remote Sensing, 2019, 11(17):2043.
doi: 10.3390/rs11172043
[11] Farid M F. Comparison of different vegetation indices for assessing mangrove density using Sentinel-2 imagery[J]. International Journal of GEOMATE, 2018, 14(45):42-51.
[12] Baloloy A B, Blanco A C, Ana R R C S, et al. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166:95-117.
doi: 10.1016/j.isprsjprs.2020.06.001
[13] Manna S, Raychaudhuri B. Retrieval of leaf area index and stress conditions for Sundarban mangroves using Sentinel-2 data[J]. International Journal of Remote Sensing, 2020, 41(3):1019-1039.
doi: 10.1080/01431161.2019.1655174
[14] 徐芳, 张英, 翟亮, 等. 基于Sentinel-2的潮间红树林提取方法[J]. 测绘通报, 2020(2):49-54.
Xu F, Zhang Y, Zhai L, et al. Extraction method of intertidal mangrove by using Sentinel-2 images[J]. Bulletin of Surveying and Mapping, 2020(2):49-54.
[15] Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content,biomass and hydric status[J]. International Journal of Remote Sensing, 1994, 15(7):1459-1470.
doi: 10.1080/01431169408954177
[16] 王利军, 郭燕, 王来刚, 等. GF6卫星红边波段对春季作物分类精度的影响[J]. 河南农业科学, 2020, 49(6):165-173.
Wang L J, Guo Y, Wang L G, et al. Impact of red-edge waveband of GF6 satellite on classification accuracy of spring crops[J]. Journal of Henan Agricultural Sciences, 2020, 49(6):165-173.
[17] 梁继, 郑镇炜, 夏诗婷, 等. 高分六号红边特征的农作物识别与评估[J]. 遥感学报, 2020, 24(10):1168-1179.
Liang J, Zheng Z W, Xia S T, et al. Crop recognition and evaluation using red edge features of GF-6 satellite[J]. Journal of Remote Sensing, 2020, 24(10):1168-1179.
[18] 姚保民, 王利民, 王铎, 等. 高分六号卫星WFV新增谱段对农作物识别精度的改善[J]. 卫星应用, 2020(12):31-34.
Yao B M, Wang L M, Wang D, et al. Improvement of the accuracy of crop recognition by the newly added spectrum of the GF-6 satellite WFV[J]. Satellite Application, 2020(12):31-34.
[19] 张沁雨, 李哲, 夏朝宗, 等. 高分六号遥感卫星新增波段下的树种分类精度分析[J]. 地球信息科学学报, 2019, 21(10):1619-1628.
doi: 10.12082/dqxxkx.2019.190116
Zhang Q Y, Li Z, Xia C Z, et al. Tree species classification based on the new bands of GF-6 remote sensing satellite[J]. Journal of Geo-Information Science, 2019, 21(10):1619-1628.
[20] Xia Q, Qin C Z, Li H, et al. Mapping mangrove forests based on multi-tidal high-resolution satellite imagery[J]. Remote Sensing, 2018, 10(9):1343.
doi: 10.3390/rs10091343
[21] Zhang X H, Treitz P M, Chen D M, et al. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 62:201-214.
doi: 10.1016/j.jag.2017.06.010
[22] Rogers K, Lymburner L, Salum R, et al. Mapping of mangrove extent and zonation using high and low tide composites of Landsat data[J]. Hydrobiologia, 2017, 803(1):49-68.
doi: 10.1007/s10750-017-3257-5
[23] Jia M M, Wang Z M, Zhang Y Z, et al. Landsat-based estimation of mangrove forest loss and restoration in Guangxi Province,China,influenced by human and natural factors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):311-323.
doi: 10.1109/JSTARS.4609443
[24] Jia M M, Wang Z M, Zhang Y Z, et al. Monitoring loss and recovery of mangrove forests during 42 years: The achievements of mangrove conservation in China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73:535-545.
doi: 10.1016/j.jag.2018.07.025
[25] 陆春玲, 白照广, 李永昌, 等. 高分六号卫星技术特点与新模式应用[J]. 航天器工程, 2021, 30(1):7-14.
Lu C L, Bai Z G, Li Y C, et al. Technical characteristic and new mode applications of GF-6 satellite[J]. Spacecraft Engineering, 2021, 30(1):7-14.
[26] 张威, 陈正华, 王纪坤. 广西北部湾海岸带红树林变化的遥感监测[J]. 广西大学学报(自然科学版), 2015, 40(6):1570-1576.
Zhang W, Chen Z H, Wang J K. Monitoring the areal variation of mangrove in Beibu Gulf coast of Guangxi China with remote sensing data[J]. Journal of Guangxi University (Natural Science Edition), 2015, 40(6):1570-1576.
[27] Pettorelli N, Ryan S, Mueller T, et al. The normalized difference vegetation index (NDVI):Unforeseen successes in animal ecology[J]. Climate Research, 2011, 46(1):15-27.
doi: 10.3354/cr00936
[28] Gao B C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.
doi: 10.1016/S0034-4257(96)00067-3
[29] Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves[J]. International Journal of Remote Sensing, 1997, 18(12):2691-2697.
doi: 10.1080/014311697217558
[30] Gower J, Hu C M, Borstad G, et al. Ocean color satellites show extensive lines of floating sargassum in the Gulf of Mexico[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12):3619-3625.
doi: 10.1109/TGRS.2006.882258
[31] Hu C M. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.
doi: 10.1016/j.rse.2009.05.012
[32] Gao B C, Li R R. FVI-A floating vegetation index formed with three near-IR channels in the 1.0-1.24 μm spectral range for the detection of vegetation floating over water surfaces[J]. Remote Sensing, 2018, 10(9):1421.
doi: 10.3390/rs10091421
[1] 闫涵, 张毅. 利用GF-6影像结合国土“三调”开展西部地区县域自然资源调查[J]. 自然资源遥感, 2023, 35(2): 277-286.
[2] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[3] 孔爱玲, 张承明, 李峰, 韩颖娟, 孙焕英, 杜漫飞. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2): 47-55.
[4] 王仁军, 李东颖, 刘宝康. 基于高分六号WFV数据的可可西里湖泊水体识别模型[J]. 自然资源遥感, 2022, 34(2): 80-87.
[5] 张成业, 邢江河, 李军, 桑潇. 基于U-Net网络和GF-6影像的尾矿库空间范围识别[J]. 自然资源遥感, 2021, 33(4): 252-257.
[6] 王喆, 赵哲, 闫柏琨, 杨苏明. 基于Hapke模型混合岩矿粉末反射率光谱模拟[J]. 国土资源遥感, 2017, 29(1): 186-191.
[7] 潘佩芬, 杨武年, 戴晓爱. 基于主成分分析的植被含水率模型[J]. 国土资源遥感, 2013, 25(3): 38-42.
[8] 刘艳, 汪宏, 张璞, 李杨.
MODIS大气校正精度评价及其对表层雪密度提取影响
[J]. 国土资源遥感, 2011, 23(1): 128-132.
[9] 高占国, 张利权. 盐沼植被光谱特征的间接排序识别分析[J]. 国土资源遥感, 2006, 18(2): 51-56.
[10] 祝善友, 韩作振, 张光超. 煤田火区烧变岩光谱特征分析及其信息提取[J]. 国土资源遥感, 2003, 15(2): 55-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发