Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 89-96    DOI: 10.6046/zrzyyg.2022095
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于奇异谱分析的改进遥感时空融合模型
安娜1(), 赵莹莹2, 孙娅琴1, 张爱竹3, 付航3, 姚延娟4(), 孙根云3,5
1.中国自然资源航空物探遥感中心,北京 100083
2.长沙市规划勘测设计研究院,长沙 410007
3.中国石油大学(华东)海洋与空间信息学院,青岛 266580
4.环境保护部卫星环境应用中心,北京 100094
5.青岛海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266237
An improved spatio-temporal fusion model for remote sensing images based on singular spectrum analysis
AN Na1(), ZHAO Yingying2, SUN Yaqin1, ZHANG Aizhu3, FU Hang3, YAO Yanjuan4(), SUN Genyun3,5
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Changsha Planning and Design Survey Research Institute, Changsha 410007, China
3. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China
4. Satellite Environment Center, Ministry of Environmental protection of China, Beijing 100094, China
5. Laboratory for Marine Resources Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
全文: PDF(5166 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

时空融合能够生成具有足够时间和空间分辨率的图像序列。然而,当前的研究趋向于使用尽可能多的时相数据、复杂的非线性模型来提高预测的准确性,极少的研究将重点放在图像本身的分析,即充分利用影像包含的如趋势和纹理等内在特征。为此,文章基于二维奇异谱分析(2D singular spectrum analysis,2DSSA)技术,提出了一种2DSSA时空融合模型(2DSSA spatial-temporal fusion model,2DSSA-STFM),通过将已有影像分解为趋势分量和细节分量,分别对目标时刻影像的主要空间趋势和空间细节进行预测。首先,建立高空间分辨率数据趋势项与低空间分辨率数据的线性关系,计算得到目标时刻影像的趋势成分; 然后,建立2个时相下低分辨率细节分量和高分辨率细节分量的线性关系,得到目标时刻影像的细节成分; 最后,将计算得到的趋势和细节成分进行合成,即为目标预测影像。在2组中分辨率Landsat7 ETM+和MODIS影像上对提出的2DSSA-STFM进行了实验,结果表明,提出的模型在实验误差方面要优于传统的时空融合模型。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安娜
赵莹莹
孙娅琴
张爱竹
付航
姚延娟
孙根云
关键词 时空融合奇异谱分析趋势分量细节分量分解    
Abstract

Spatio-temporal fusion can generate image sequences with sufficiently high temporal and spatial resolution. However, current studies tend to improve prediction accuracy using as much spatio-temporal data as possible and complex non-linear models, while few of them focus on analyzing images themselves by making full use of their intrinsic features, such as trends and textures. This study proposed a 2DSSA spatio-temporal fusion model (2DSSA-STFM) based on 2D singular spectrum analysis (2DSSA). In this model, the major spatial trends and details of the existing images at the target moment can be predicted by decomposing the images into trend and detail components. Firstly, the linear relationship between the trend of high-spatial-resolution data and low-spatial-resolution data was built to calculate the trend components of the images at the target moment. Then, the linear relationship between the low-resolution and the high-resolution detail components in two time phases was established to determine the detail components of the images at the target moment. Finally, the calculated trend and detail components were combined to form the target prediction images. The 2DSSA-STFM was applied to two sets of medium-resolution Landsat7 ETM+ and MODIS images, yielding smaller experimental errors than conventional spatio-temporal fusion models.

Key wordsspatio-temporal fusion    singular spectrum analysis    trend component    detail component    decomposition
收稿日期: 2022-03-21      出版日期: 2023-07-07
ZTFLH:  TP753  
基金资助:国家自然科学基金项目“饮用水源地保护区环境风险源变化多尺度遥感探测机制与不确定性研究”(41871270);“复杂城市地表不透水面多源高分遥感成像机理与分层优化提取方法”(41971292)
通讯作者: 姚延娟(1974-),女,博士,正高级工程师,主要从事多源遥感数据智能解译的研究。Email: yaoyj@secmep.cn
作者简介: 安 娜(1980-),女,硕士,高级工程师,主要从事遥感数据处理技术方法研究与矿产资源应用。Email: an_na826@163.com
引用本文:   
安娜, 赵莹莹, 孙娅琴, 张爱竹, 付航, 姚延娟, 孙根云. 基于奇异谱分析的改进遥感时空融合模型[J]. 自然资源遥感, 2023, 35(2): 89-96.
AN Na, ZHAO Yingying, SUN Yaqin, ZHANG Aizhu, FU Hang, YAO Yanjuan, SUN Genyun. An improved spatio-temporal fusion model for remote sensing images based on singular spectrum analysis. Remote Sensing for Natural Resources, 2023, 35(2): 89-96.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022095      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/89
Fig.1  算法流程
Fig.2  数据集1的MODIS和Landsat7 ETM+影像
Fig.3  数据集2的MODIS和Landsat7 ETM+影像
Fig.4  数据集1预测的趋势项和细节项
Fig.5  数据集1预测图像
方法 波段 AAD RMSE ERGAS SSIM
STARFM 绿光 117.99 160.36 0.848 0.536
红光 174.08 239.12 0.432
近红外 304.41 448.40 0.438
2DSSA-
STFM
绿光 115.12 157.79 0.828 0.552
红光 170.55 234.55 0.442
近红外 291.29 418.66 0.518
Tab.1  数据集1的定量评估结果
Fig.6  数据集2预测图像
方法 波段 AAD RMSE ERGAS SSIM
STARFM 绿光 315.86 415.92 1.287 0.120
红光 89.01 131.83 0.522
近红外 67.69 93.68 0.624
ESTARFM 绿光 16.01 21.15 1.154 0.947
红光 18.89 25.13 0.909
近红外 25.26 32.86 0.875
2DSSA-
STFM
绿光 28.29 35.45 1.233 0.894
红光 28.02 37.30 0.834
近红外 24.79 32.34 0.882
Tab.2  数据集2的定量评估结果
[1] Roy D P, Wulder M A, Loveland T R, et al. Landsat8:Science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014, 145:154-172.
doi: 10.1016/j.rse.2014.02.001
[2] Singh D. Generation and evaluation of gross primary productivity using Landsat data through blending with MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(1):59-69.
doi: 10.1016/j.jag.2010.06.007
[3] Bhandari S, Phinn S, Gill T. Preparing Landsat image time series (LITS) for monitoring changes in vegetation phenology in Queensland,Australia[J]. Remote Sensing, 2012, 4(6):1856-1886.
doi: 10.3390/rs4061856
[4] Weng Q H, Fu P, Gao F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data[J]. Remote Sensing of Environment, 2014, 145:55-67.
doi: 10.1016/j.rse.2014.02.003
[5] Gevaert C M, García-Haro F J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion[J]. Remote Sensing of Environment, 2015, 156:34-44.
doi: 10.1016/j.rse.2014.09.012
[6] 邬明权, 牛铮, 王长耀. 多源遥感数据时空融合模型应用分析[J]. 地球信息科学学报, 2014, 16(5):776-783.
doi: 10.3724/SP.J.1047.2014.00776
Wu M Q, Niu Z, Wang C Y. Assessing the accuracy of spatial and temporal image fusion model of complex area in south China[J]. Journal of Geo-Information Science, 2014, 16(5):776-783.
[7] Zhao Y, Huang B, Song H. A robust adaptive spatial and temporal image fusion model for complex land surface changes[J]. Remote Sensing of Environment, 2018, 208:42-62.
doi: 10.1016/j.rse.2018.02.009
[8] 张爱竹, 王伟, 郑雄伟, 等. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3):18-26.doi:10.6046/zrzyyg.2020346.
doi: 10.6046/zrzyyg.2020346
Zhang A Z, Wang W, Zheng X W, et al. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3):18-26.doi:10.6046/zrzyyg.2020346.
doi: 10.6046/zrzyyg.2020346
[9] Wu M, Wu C, Huang W, et al. An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery[J]. Information Fusion, 2016, 31:14-25.
doi: 10.1016/j.inffus.2015.12.005
[10] Huang B, Song H. Spatiotemporal reflectance fusion via sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10):3707-3716.
doi: 10.1109/TGRS.2012.2186638
[11] Cheng Q, Liu H, Shen H, et al. A spatial and temporal nonlocal filter-based data fusion method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8):4476-4488.
doi: 10.1109/TGRS.2017.2692802
[12] Li J, Li Y, He L, et al. Spatio-temporal fusion for remote sensing data:An overview and new benchmark[J]. Science China Information Sciences, 2020, 63(4):7-23.
[13] 董文全, 蒙继华. 遥感数据时空融合研究进展及展望[J]. 国土资源遥感, 2018, 30(2):1-11.doi:10.6046/gtzyyg.2018.02.01.
doi: 10.6046/gtzyyg.2018.02.01
Dong W Q, Meng J H. Review of spatiotemporal fusion model of remote sensing data[J]. Remote Sensing for Land and Resources, 2018, 30(2):1-11.doi:10.6046/gtzyyg.2018.02.01.
doi: 10.6046/gtzyyg.2018.02.01
[14] Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2207-2218.
doi: 10.1109/TGRS.2006.872081
[15] Zhu X, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11):2610-2623.
doi: 10.1016/j.rse.2010.05.032
[16] Shao Z, Cai J, Fu P, et al. Deep learning-based fusion of Landsat8 and Sentinel-2 images for a harmonized surface reflectance product[J]. Remote Sensing of Environment, 2019, 235(12):111425.
doi: 10.1016/j.rse.2019.111425
[17] Li Y, Li J, He L, et al. A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks[J]. Science China Information Sciences, 2020, 63(4):20-35.
[18] Jia D, Song C, Cheng C, et al. A novel deep learning-based spatio-temporal fusion method for combining satellite images with different resolutions using a two-stream convolutional neural network[J]. Remote Sensing, 2020, 12(4):698.
doi: 10.3390/rs12040698
[19] Fu H, Sun G, Ren J, et al. Fusion of PCA and segmented-PCA domain multiscale 2-D-SSA for effective spectral-spatial feature extraction and data classification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-14.
[20] Sun G, Fu H, Ren J, et al. SpaSSA:Superpixelwise adaptive SSA for unsupervised spatial-spectral feature extraction in hyperspectral image[J]. IEEE Transactions on Cybernetics, 2022, 52(7):6158-6169.
doi: 10.1109/TCYB.2021.3104100
[21] Zabalza J, Ren J, Zheng J, et al. Novel two-dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8):4418-4433.
doi: 10.1109/TGRS.36
[22] Emelyanova I V, McVicar T R, Van Niel T G, et al. Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics:A framework for algorithm selection[J]. Remote Sensing of Environment, 2013, 133:193-209.
doi: 10.1016/j.rse.2013.02.007
[23] 刘慧琴, 吴鹏海, 沈焕锋, 等. 一种基于非局部滤波的遥感时空信息融合方法[J]. 地理与地理信息科学. 2015, 31(4):27-32.
Liu H W, Wu P H, Sheng H F. A spatio-temporal information fusion method based on non-local means filter[J]. Geography and Geo-Information Science, 2015, 31(4):27-32.
[1] 张士博, 胡文敏, 韩祯颖, 李果, 王忠诚, 高志海. GF-6与Landsat8混合像元分解的石漠化信息提取差异研究——以普定县为例[J]. 自然资源遥感, 2023, 35(3): 274-283.
[2] 李娜, 甘甫平, 董新丰, 李娟, 张世凡, 李彤彤. 基于高分五号高光谱数据的石漠化调查应用研究[J]. 自然资源遥感, 2023, 35(2): 230-235.
[3] 盛德志, 邢前国, 刘海龙, 郑向阳. 基于混合像元分解的池塘养殖动态遥感监测[J]. 自然资源遥感, 2022, 34(4): 53-59.
[4] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[5] 张爱竹, 王伟, 郑雄伟, 姚延娟, 孙根云, 辛蕾, 王宁, 胡光. 一种基于分层策略的时空融合模型[J]. 自然资源遥感, 2021, 33(3): 18-26.
[6] 赵怡, 许剑辉, 钟凯文, 王云鹏, 胡泓达, 吴萍昊. 基于Sentinel-2A和Landsat8的城市不透水面的提取[J]. 国土资源遥感, 2021, 33(2): 40-47.
[7] 张红利, 罗蔚然, 李艳. 基于粒子群优化和像元分解模型的遥感影像时空融合[J]. 国土资源遥感, 2020, 32(4): 33-40.
[8] 秦其明, 陈晋, 张永光, 任华忠, 吴自华, 张赤山, 吴霖升, 刘见礼. 定量遥感若干前沿方向探讨[J]. 国土资源遥感, 2020, 32(4): 8-15.
[9] 黄鹏艳, 卜丽静, 范永良. 结合视觉特征的极化SAR图像分类[J]. 国土资源遥感, 2020, 32(2): 88-93.
[10] 石晨烈, 王旭红, 张萌, 刘状, 祝新明. 3种时空融合算法在洪水监测中的适用性研究[J]. 国土资源遥感, 2020, 32(2): 111-119.
[11] 周光宇, 刘邦权, 张亶. 基于变分模态分解的SAR图像目标识别方法[J]. 国土资源遥感, 2020, 32(2): 33-39.
[12] 朱爽, 张锦水. 时间序列低分影像修正中分遥感冬小麦分布[J]. 国土资源遥感, 2020, 32(1): 19-26.
[13] 冯娟, 丁建丽, 魏雯瑜. 基于雷达数据的区域土壤盐渍化监测[J]. 国土资源遥感, 2019, 31(1): 195-203.
[14] 侯增福, 刘镕源, 闫柏琨, 谭琨. 基于波段选择与学习字典的高光谱图像异常探测[J]. 国土资源遥感, 2019, 31(1): 33-41.
[15] 董文全, 蒙继华. 遥感数据时空融合研究进展及展望[J]. 国土资源遥感, 2018, 30(2): 1-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发