Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 134-144    DOI: 10.6046/zrzyyg.2022205
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于改进全连接条件随机场的SAR影像变化检测
董婷1,2(), 符潍奇1,2, 邵攀1,2(), 高利鹏3, 武昌东1,2
1.三峡大学湖北省水电工程智能视觉监测重点实验室,宜昌 443002
2.三峡大学计算机与信息学院,宜昌 443002
3.西北工业大学软件学院,西安 710129
Detection of changes in SAR images based on an improved fully-connected conditional random field
DONG Ting1,2(), FU Weiqi1,2, SHAO Pan1,2(), GAO Lipeng3, WU Changdong1,2
1. Hubei Key Laboratory of Intelligent Vision Monitoring for Hydropower Engineering, China Three Gorges University, Yichang 443002, China
2. College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China
3. School of Software, Northwestern Polytechnical University, Xi’an 710129, China
全文: PDF(5646 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

变化检测是遥感领域的重要研究方向。针对现有条件随机场变化检测技术的不足,通过改进全连接条件随机场(fully connected conditional random field, FCCRF),提出一种全新的合成孔径雷达(synthetic aperture Radar, SAR)影像变化检测方法。首先,对生成SAR差分影像的对比算法进行总结,将其划分为像素级、邻域级和超邻域级3个层级; 然后,选取对数比、邻域比和改进非局部图3种典型对比算法,生成3组互补差分影像; 最后,通过扩展FCCRF二元势函数的高斯核个数对FCCRF进行改进,并利用改进后FCCRF模型生成变化检测图。所提出变化检测技术能够综合利用2期SAR影像的原始影像、3组互补差分影像和影像全局空间信息。另外,本文通过提出一种简单有效的参数确定策略,使得FCCRF能够全自动进行变化检测。4组真实SAR影像数据的实验结果表明,本文方法可行有效。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董婷
符潍奇
邵攀
高利鹏
武昌东
关键词 遥感非监督变化检测SAR影像差分影像条件随机场    
Abstract

Change detection is the research focus of remote sensing. To overcome the shortcomings of the existing conditional random field (CRF)-based change detection, this study proposed a novel change detection method for synthetic aperture Radar (SAR) images based on an improved fully connected CRF (FCCRF). Firstly, this study summarized the comparative algorithms for generating differential images from SAR images, which were divided into three levels, namely pixel, neighborhood, and super-neighborhood. Then, this study selected three typical comparative algorithms-log ratio (LR), neighborhood ratio (NR), and improved non-local graph (INLG)-to produce three sets of complementary differential images. Finally, this study improved the FCCRF by extending the number of Gaussian kernels of the pairwise potential function of FCCRF and generated the change detection maps using the improved FCCRF model. The change detection method proposed in this study integrated the two-phase original SAR images, three sets of complementary differential images, and the global spatial information of images. In addition, this study presented a simple and effective parameter determination strategy, which allows the FCCRF to perform the change detection automatically. Experimental results on four sets of real SAR image data confirmed the effectiveness of the change detection method proposed in this study.

Key wordsremote sensing    unsupervised change detection    SAR image    differential image    conditional random field
收稿日期: 2022-05-20      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“模糊拓扑空间下高分辨率遥感影像多尺度融合变化检测方法研究”(41901341);“基于倾斜摄影和浮动车轨迹数据的精细化城市车道提取方法”(42101469)
通讯作者: 邵 攀(1985-),男,博士,副教授,主要从事遥感图像处理、变化检测、人工智能等研究。Email: panshao@whu.edu.cn
作者简介: 董 婷(1988-),女,博士,副教授,主要从事模式识别、遥感图像处理、3S技术等研究。Email: dongt@ctgu.edu.cn
引用本文:   
董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022205      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/134
Fig.1  IFCCRF变化检测方法流程
Fig.2  主要SAR影像差分影像生成算法分类
Fig.3  数据源
Fig.4  数据1不同算法的变化检测结果
Fig.5  数据2不同算法的变化检测结果
Fig.6  数据3不同算法的变化检测结果
Fig.7  数据4不同算法的变化检测结果
方法 数据1 数据2
MD FA OE Kappa MD FA OE Kappa
LR 981 4 046 5 027 0.586 2 569 2 241 2 810 0.753 3
NR 521 24 063 24 584 0.209 3 341 6 697 7 038 0.546 5
INLG 1 647 1 168 2 815 0.682 6 495 2 275 2 773 0.758 5
PCAKM 1 220 1 597 2 817 0.708 4 373 1 525 1 898 0.826 4
MRF 941 2 377 3 318 0.688 2 719 596 1 315 0.865 9
CRF 1 143 1 617 2 760 0.716 9 620 425 1 045 0.892 8
FCCRF 1 218 1 106 2 324 0.747 6 834 180 1 014 0.891 4
FRFCM 517 13 896 14 413 0.335 5 919 514 1 513 0.842 9
IFCCRF 1 196 652 1 848 0.790 2 409 358 767 0.922 3
方法 数据3 数据4
MD FA OE Kappa MD FA OE Kappa
LR 338 902 1 240 0.865 0 289 91 380 0.818 0
NR 40 32 288 32 328 0.110 3 73 351 424 0.833 8
INLG 762 149 911 0.888 6 288 212 500 0.773 4
PCAKM 25 1 618 1 643 0.836 8 143 355 498 0.799 8
MRF 328 843 1 171 0.871 9 44 533 577 0.790 7
CRF 499 460 959 0.889 3 261 63 324 0.844 8
FCCRF 700 177 877 0.893 7 181 174 355 0.843 9
FRFCM 423 830 1 253 0.861 5 114 640 754 0.730 1
IFCCRF 189 362 570 0.935 5 151 115 266 0.881 5
Tab.1  4组数据变化检测的定量指标
方法 数据2 数据3
MD FA OE Kappa MD FA OE Kappa
F-FCM 509 1 245 1 754 0.835 0 439 355 794 0.908 0
F-FCCRF 710 763 1473 0.852 2 376 294 670 0.922 4
IFCCRF 409 358 767 0.922 3 189 362 570 0.935 5
Tab.2  F-FCM,F-FCCRF和IFCCRF的变化检测结果
[1] 公茂果, 苏临之, 李豪, 等. 合成孔径雷达影像变化检测研究进展[J]. 计算机研究与发展, 2016, 53(1):123-147.
Gong M G, Su L Z, Li H, et al. A survey on change detection in synthetic aperture Radar imagery[J]. Journal of Computer Research and Development, 2016, 53(1):123-147.
[2] 王译著, 黄亮, 陈朋弟, 等. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3):89-96.doi:10.6046/zrzyyg.2020312.
doi: 10.6046/zrzyyg.2020312
Wang Y Z, Huang L, Chen P D, et al. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3):89-96.doi:10.6046/zrzyyg.2020312.
doi: 10.6046/zrzyyg.2020312
[3] 吴柳青, 胡翔云. 基于多尺度多特征的高空间分辨率遥感影像建筑物自动化检测[J]. 国土资源遥感, 2019, 31(1):71-78.doi:10.6046/gtzyyg.2019.01.10.
doi: 10.6046/gtzyyg.2019.01.10
Wu L Q, Hu X Y. Automatic building detection of high-resolution remote sensing images based on multi-scale and multi-feature[J]. Remote Sensing for Land and Resources, 2019, 31(1):71-78.doi:10.6046/gtzyyg.2019.01.10.
doi: 10.6046/gtzyyg.2019.01.10
[4] 何陈临秋, 程博, 陈金奋, 等. 基于GF-3全极化SAR数据的滨海湿地信息提取方法[J]. 自然资源遥感, 2021, 33(4):105-110.doi:10.6046/zrzyyg.2020353.
doi: 10.6046/zrzyyg.2020353
He C L Q, Cheng B, Chen J F, et al. Information extraction methods of coastal wetland based on GF-3 fully polarimetric SAR data[J]. Remote Sensing for Natural Resources, 2021, 33(4):105-110.doi:10.6046/zrzyyg.2020353.
doi: 10.6046/zrzyyg.2020353
[5] Gong M G, Li Y, Jiao L C, et al. SAR change detection based on intensity and texture changes[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93(7):123-135.
doi: 10.1016/j.isprsjprs.2014.04.010
[6] 王建明, 史文中, 邵攀. 自适应距离和模糊拓扑优化的模糊聚类SAR影像变化检测[J]. 测绘学报, 2018, 47(5):611-619.
doi: 10.11947/j.AGCS.2018.20160607
Wang J M, Shi W Z, Shao P. Change detection method for SAR image using adaptive distance and fuzzy topology optimization-based fuzzy clustering[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):611-619.
[7] 庄会富, 邓喀中, 余美, 等. 结合KI准则和逆高斯模型的SAR影像非监督变化检测[J]. 武汉大学学报(信息科学版), 2018, 43(2):282-288.
Zhuang H F, Deng K Z, Yu M, et al. A novel approach combining KI criterion and inverse Gaussian model to unsupervised change detection in SAR images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2):282-288.
[8] Sun Y L, Lei L, Guan D D, et al. SAR image change detection based on nonlocal low-rank model and two-level clustering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 1(99):1-14.
doi: 10.1109/JSTARS.4609443
[9] Bazi Y, Bruzzone L, Melgani F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):874-887.
doi: 10.1109/TGRS.2004.842441
[10] Moser G, Serpico S B. Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2972-2982.
doi: 10.1109/TGRS.2006.876288
[11] Celik T. Change detection in satellite images using a genetic algorithm approach[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2):386-390.
doi: 10.1109/LGRS.2009.2037024
[12] Inglada J, Mercier G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1432-1445.
doi: 10.1109/TGRS.2007.893568
[13] Gong M G, Cao Y, Wu Q D. A neighborhood-based ratio approach for change detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 9(2):307-311.
doi: 10.1109/LGRS.2011.2167211
[14] Celik T. Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):772-776.
doi: 10.1109/LGRS.2009.2025059
[15] Sun Y L, Lei L, Li X, et al. Nonlocal patch similarity based heterogeneous remote sensing change detection[J]. Pattern Recognition, 2020, 109:107598.
doi: 10.1016/j.patcog.2020.107598
[16] Sun Y L, Lei L, Li X, et al. Structure consistency-based graph for unsupervised change detection with homogeneous and heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-21.
[17] Ma J J, Gong M G, Zhou Z Q. Wavelet fusion on ratio images for change detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6):1122-1126.
doi: 10.1109/LGRS.2012.2191387
[18] Zheng Y, Zhang X, Hou B, et al. Using combined difference image and K-means clustering for SAR image change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3):691-695.
doi: 10.1109/LGRS.2013.2275738
[19] Zhang Y, Wang S G, Wang C, et al. SAR image change detection using saliency extraction and Shearlet transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12):4701-4710.
doi: 10.1109/JSTARS.4609443
[20] Bruzzone L, Prieto D F. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1171-1182.
doi: 10.1109/36.843009
[21] Hao M, Shi W, Zhang H, et al. Unsupervised change detection with expectation-maximization-based level set[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):210-214.
doi: 10.1109/LGRS.2013.2252879
[22] Bazi Y, Melgani F, Al-Sharari H D. Unsupervised change detection in multispectral remotely sensed imagery with level set methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8):3178-3187.
doi: 10.1109/TGRS.2010.2045506
[23] Shao P, Shi W, Liu Z, et al. Unsupervised change detection using fuzzy topology-based majority voting[J]. Remote Sensing, 2021, 13:3171.
doi: 10.3390/rs13163171
[24] Lyu P Y, Zhong Y F, Zhao J, et al. Unsupervised change detection based on hybrid conditional random field model for high spatial resolution remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7):4002-4015.
doi: 10.1109/TGRS.2018.2819367
[25] Hedjam R, Kalacska M, Mignotte M, et al. Iterative classifiers combination model for change detection in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):6997-7008.
doi: 10.1109/TGRS.2016.2593982
[26] Gong M G, Su L Z, Jia M, et al. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture Radar images[J]. IEEE Transactions on Fuzzy Systems, 2013, 22(1):98-109.
doi: 10.1109/TFUZZ.2013.2249072
[27] Hao M, Zhang H, Shi W Z, et al. Unsupervised change detection using fuzzy C-means and MRF from remotely sensed images[J]. Remote Sensing Letters, 2014, 4(12):1185-1194.
doi: 10.1080/2150704X.2013.858841
[28] Subudhi B N, Bovolo F, Ghosh A, et al. Spatio-contextual fuzzy clustering with Markov random field model for change detection in remotely sensed images[J]. Optics and Laser Technology, 2014, 57:284-292.
doi: 10.1016/j.optlastec.2013.10.003
[29] 范奎奎, 王中元, 欧阳斯达, 等. DT-CWT结合MRF的遥感图像变化检测[J]. 遥感学报, 2017, 21(3):375-385.
Fan K K, Wang Z Y, Ouyang S D, et al. Change detection of remote sensing images through DT-CWT and MRF[J]. Journal of Remote Sensing, 2017, 21(3):375-385.
[30] Hoberg T, Rottensteiner F, Feitosa R Q, et al. Conditional random fields for multitemporal and multiscale classification of optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(2):659-673.
doi: 10.1109/TGRS.2014.2326886
[31] Cao G, Zhou L C, Li Y P. A new change-detection method in high-resolution remote sensing images based on a conditional random field model[J]. International Journal of Remote Sensing, 2016, 37(5):1173-1189.
doi: 10.1080/01431161.2016.1148284
[32] Zhou L C, Cao G, Li Y P, et al. Change detection based on conditional random field with region connection constraints in high-reso-lution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8):3478-3488.
doi: 10.1109/JSTARS.4609443
[33] Lafferty J, McCallum A, Pereira F C. Conditional random fields:Probabilistic models for segmenting and labeling sequence data[C]// International Conference on Machine Learning(ICML), 2001:282-289.
[34] Kumar S, Hebert M. Discriminative random fields:A discriminative framework for contextual interaction in classification[C]// Ninth IEEE International Conference on Computer Vision.IEEE, 2003:1150-1157.
[35] Krähenbühl P, Koltun V. Efficient inference in fully connected CRFs with Gaussian edge potentials[J]. Advances in Neural Information Processing Systems, 2011, 24(1):109-117.
[36] Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981:43-93.
[37] Shao P, Yi Y Q, Dong T, et al. Novel multiscale decision fusion approach to unsupervised change detection for high-resolution images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19(1):1-5.
[38] Lei T, Jia X H, Zhang Y N, et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5):3027-3041.
doi: 10.1109/TFUZZ.91
[1] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[2] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[3] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[4] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[5] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[6] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[7] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[8] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[9] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[10] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[11] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[12] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[13] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[14] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[15] 赵海岚, 蒙继华, 纪云鹏. 遥感技术在苹果园精准种植管理中的应用现状及展望[J]. 自然资源遥感, 2023, 35(2): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发