Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 90-95    DOI: 10.6046/zrzyyg.2022315
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
采用注意力机制与改进YOLOv5的光伏用地检测
陈笛1(), 彭秋志1,2,3(), 黄培依1, 刘雅璇1
1.昆明理工大学国土资源工程学院,昆明 650093
2.云南省高校高原山区空间信息测绘技术应用工程研究中心,昆明 650093
3.云南省自然资源与规划智慧创新实验室,昆明 650093
Detecting land for photovoltaic development based on the attention mechanism and improved YOLOv5
CHEN Di1(), PENG Qiuzhi1,2,3(), HUANG Peiyi1, LIU Yaxuan1
1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Surveying and Mapping Geo-informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education, Kunming 650093, China
3. Yunnan Natural Resources and Planning Intelligence Innovation Laboratory, Kunming 650093, China
全文: PDF(2391 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对光伏产业快速发展所产生的光伏用地检测与定位需求,提出了一种基于YOLOv5改进的光伏用地检测算法YOLOv5-pv。为实现复杂场景下光伏用地的快速精确检测与定位,首先在YOLOv5基础上引入加权双向特征金字塔以实现简单快速的多尺度特征融合从而强化对小目标的检测能力; 其次引入Ghost卷积以保留冗余信息中有用的特征图信息; 最后增加协同注意力机制提高算法对光伏用地的关注度以提高抗背景干扰能力。实验结果表明: YOLOv5-pv比YOLOv5召回率提高6.68百分点,平均精度提高4.43百分点。该方法对光伏用地检测效果较好,可为光伏用地检测研究提供新的实验参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈笛
彭秋志
黄培依
刘雅璇
关键词 深度学习YOLOv5光伏用地遥感影像检测注意力机制    
Abstract

In response to the detection and positioning demands for land for photovoltaic development due to the rapid growth of the photovoltaic industry, this study proposed a YOLOv5-pv algorithm for the detection of land for photovoltaic development based on the improved YOLOv5. For quick and accurate detection and positioning of land for photovoltaic development in complex scenes, the YOLOv5-pv algorithm adopted a weighted bi-directional feature pyramid based on YOLOv5 to achieve simple and fast multi-scale feature fusion, thereby enhancing the ability to detect small targets. Subsequently, the Ghost convolution was employed to retain valuable feature map information in redundant information. Finally, a co-attention mechanism was integrated to improve the algorithm's attention on the land for photovoltaic development, increasing its capacity to resist background interference. The experimental results demonstrate that YOLOv5-pv outperformed YOLOv5, with the recall rate and average accuracy improved by 6.68 percentage points and 4.43 percentage points, respectively. Therefore, the method proposed in this study can effectively detect the land for photovoltaic development, holding referential significance for relevant detection research.

Key wordsdeep learning    YOLOv5    land for photovoltaic development    remote sensing imaging detection    attention mechanism
收稿日期: 2022-08-01      出版日期: 2023-12-21
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“南方山地城镇建设用地分布与变化的坡度梯度效应研究”(41961039)
通讯作者: 彭秋志(1982-), 男,博士,讲师,主要研究方向为基于3S技术的空间分析方法研究。Email: pengqiuzhi@kust.edu.cn
作者简介: 陈笛(1999-),男,硕士研究生,主要研究方向为遥感应用及地理空间数据分析。Email: chendi0406@qq.com
引用本文:   
陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
CHEN Di, PENG Qiuzhi, HUANG Peiyi, LIU Yaxuan. Detecting land for photovoltaic development based on the attention mechanism and improved YOLOv5. Remote Sensing for Natural Resources, 2023, 35(4): 90-95.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022315      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/90
Fig.1  加权双向特征金字塔
Fig.2  传统卷积与Ghost卷积
Fig.3  YOLOv5-pv 算法
算法 加权双向
特征金字塔
Ghost
卷积
协同注意
力机制
mAP/%
YOLOv5 × × × 80.25
算法1 × × 81.73
算法2 × 82.62
YOLOv5-pv 84.68
Tab.1  改进算法平均精度区别
影像 光伏位置 YOLOv5结果 YOLOv5-pv结果
影像1
影像2
影像3
影像4
Tab.2  2种算法检测结果
算法 正确检测数量 误判数量 漏判数量
YOLOv5-pv 170 8 18
YOLOv5 150 10 38
Tab.3  检测结果指标对比 (个)
[1] Hernandez R R, Hoffacker M K, Field C B. Land-use efficiency of big solar[J]. Environmental Science & Technology, 2014, 48(2):1315-1323.
doi: 10.1021/es4043726
[2] 韩梦瑶, 熊焦, 刘卫东. 中国光伏发电的时空分布、竞争格局及减排效益[J]. 自然资源学报, 2022, 37(5):1338-1351.
doi: 10.31497/zrzyxb.20220516
Han M Y, Xiong J, Liu W D, Spatio-temporal distribution,competitive development and emission reduction of China’s photovoltaic power generation[J]. Journal of Natural Resources, 2022, 37 (5):1338-1351.
doi: 10.31497/zrzyxb.20220516
[3] 王胜利, 张连蓬, 朱寿红, 等. 多共性特征联合的Landsat8 OLI遥感影像光伏电站提取[J]. 测绘通报, 2018,(11):46-52.
doi: 10.13474/j.cnki.11-2246.2018.0348
Wang S L, Zhang L P, Zhu S H, et al. et al Multi-invariant feature combined photovoltaic power plants extraction using multi-temporal Landsat8 OLI imagery[J]. Surveying and Mapping Bulletin, 2018,(11):46-52.
[4] Zhang X, Zeraatpisheh M, Rahman M M, et al. Texture is important in improving the accuracy of mapping photovoltaic power plants:A case study of Ningxia autonomous region,China[J]. Remote Sensing, 2021, 13(19):3909.
doi: 10.3390/rs13193909
[5] 宋业冲, 李英成, 耿中元, 等. 深度学习方法在光伏用地遥感检测中的应用[J]. 测绘科学, 2020, 45(11):84-92.
Song Y C, Li Y C, Geng Z Y, et al. Application of deep learning method in remote sensing detection of photovoltaic land[J]. Science of Surveying and Mapping, 2020, 45 (11):84-92.
[6] Costa M V C V D, Carcalho O L F, Orlandl A G, et al. Remote sensing for monitoring photovoltaic solar plants in Brazil using deep semantic segmentation[J]. Energies, 2021, 14(10):2960.
doi: 10.3390/en14102960
[7] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[8] Redmon J, Farhadi A. YOLOv3:An incremental improvement[J/OL]. arXiv, 2018. https://arxiv.org/abs/1804.02767.
[9] Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[10] 龙怡灿, 雷蓉, 董杨, 等. 基于YOLOv5算法的飞机类型光学遥感识别[J]. 地球信息科学学报, 2022, 24(3):572-582.
doi: 10.12082/dqxxkx.2022.210369
Long Y C, Lei R, Dong Y, et al. YOLOv5 based on aircraft type detection from remotely sensed optical images[J]. Journal of Geo-Information Science, 2022, 24 (3):572-582.
[11] 林森, 刘美怡, 陶志勇. 采用注意力机制与改进YOLOv5的水下珍品检测[J]. 农业工程学报, 2021, 37(18):307-314.
Lin S, Liu M Y, Tao Z Y. Detection of underwater treasures using attention mechanism and improved YOLOv5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (18):307-314.
[12] 胡根生, 吴继甜, 鲍文霞, 等. 基于改进YOLOv5网络的复杂背景图像中茶尺蠖检测[J]. 农业工程学报, 2021, 37(21):191-198.
Hu G S, Wu J T, Bao W X, et al. Detection of Ectropis oblique in complex background images using improved YOLOv5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (21):191-198.
[13] Tan M, Pang R, Le Q V. EfficientDet:Scalable and efficient object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2020:10778-10787.
[14] Han K Wang Y H, Tian Q, et al. GhostNet:More features from cheap operations[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,USA, 2020:1577-1586.
[15] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE, 2021:13713-13722.
[16] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[C]// European Conference on Computer Vision.Cham:Springer, 2016:21-37.
[17] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2014:580-587.
[18] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
[19] 陈静, 陈静波, 孟瑜, 等. 尺度和密度约束下基于 YOLOv3 的风电塔架遥感检测方法[J]. 自然资源遥感, 2021, 33(3):54-62.doi:10.6046/zrzyyg.2020309.
Chen J, Chen J B, Meng Y, et al. Detection of wind turbine towers in remote sensing based on YOLOv3 model under scale and density constraints[J]. Remote Sensing for Natural Resources, 2021, 33(3):54-62.doi:10.6046/zrzyyg.2020309.
[1] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4): 105-113.
[2] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[3] 刘涵薇, 陈富龙, 廖亚奥. 明长城(北京段)遥感动态监测与影响驱动分析[J]. 自然资源遥感, 2023, 35(4): 255-263.
[4] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[5] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[6] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[7] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[8] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[9] 邱磊, 张学志, 郝大为. 基于深度学习的视频SAR动目标检测与跟踪算法[J]. 自然资源遥感, 2023, 35(2): 157-166.
[10] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[11] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[12] 张可, 张庚生, 王宁, 温静, 李宇, 杨俊. 基于遥感和深度学习的输电线路地表水深预测[J]. 自然资源遥感, 2023, 35(1): 213-221.
[13] 金远航, 徐茂林, 郑佳媛. 基于改进YOLOv4-tiny的无人机影像枯死树木检测算法[J]. 自然资源遥感, 2023, 35(1): 90-98.
[14] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[15] 谭海, 张荣军, 樊文锋, 张一帆, 徐航. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发