Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 268-278    DOI: 10.6046/zrzyyg.2022445
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于时序Sentinel-2数据水体动态变化监测——以河南省为例
魏鑫1(), 任雨2, 陈曦东1(), 胡青峰1, 刘辉1, 周婧2, 宋冬伟3, 张培佩4, 黄志全5
1.华北水利水电大学测绘与地理信息学院,郑州 450045
2.西北师范大学地理与环境科学学院,兰州 730070
3.河南有色金属地质矿产局第七地质大队,郑州 450045
4.河南省测绘院,郑州 450045
5.洛阳理工学院,洛阳 471023
Monitoring of dynamic changes in water bodies of Henan Province based on time-series Sentinel-2 data
WEI Xin1(), REN Yu2, CHEN Xidong1(), HU Qingfeng1, LIU Hui1, ZHOU Jing2, SONG Dongwei3, ZHANG Peipei4, HUANG Zhiquan5
1. College of Surveying, Mapping and Geographic Information, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2. College of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730070, China
3. Seventh Geological Brigade, Henan Nonferrous Metals Geological and Mineral Bureau, Zhengzhou 450045, China
4. Henan Surveying and Mapping Institute, Zhengzhou 450045, China
5. Luoyang Institute of Science and Technology, Luoyang 471023, China
全文: PDF(14342 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

内陆水体作为生态系统中不可替代的资源,在气候变化、区域水循环等诸多方面起着至关重要的作用。科学准确地监测水体分布与动态变化,对维持生态系统平衡、人类可持续发展、水旱灾害预警等方面具有重要意义。然而,目前针对内陆水体的研究多以静态监测为主,对于高分辨率水体动态变化监测研究仍较为匮乏。因此,研究依托Google Earth Engine(GEE) 云计算平台,以2020年的Sentinel-2地表反射率数据为数据源,进行10 m空间分辨率水体动态变化监测研究。首先,研究基于典型地表覆盖类型在Sentinel-2不同波段及水体指数中的表现特征,选取最优的水体监测特征; 其次,研究结合先验水体产品提出一种水体训练数据集的自动提取方法,来获取高置信度水体训练样本; 再次,依据D-S (Dempster-Shafer)证据理论模型将光谱角距离与欧式距离相融合,并结合所提取的最优监测特征提出一种SA-ED (spectral angle-Euclidean distance)水体动态监测模型; 最后,以河南省为例对算法的稳定性进行测试。结果表明,本研究所提SA-ED模型能够有效对水体的动态变化进行监测,基于SA-ED算法对河南省内水体的整体监测精度达到97.03%,对于稳定性水体用户精度和生产者精度分别为95.85%和95.17%,季节性水体的用户精度和生产者精度分别为96.21%和93.82%。研究成果可为精细分辨率的水体动态变化监测提供新的借鉴与思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏鑫
任雨
陈曦东
胡青峰
刘辉
周婧
宋冬伟
张培佩
黄志全
关键词 内陆水体水体分布动态监测Google Earth EngineSentinel-2    
Abstract

Inland water bodies, as irreplaceable resources in ecosystems, play a vital role in climate change and regional water circulation. Scientifically and accurately monitoring the distribution and dynamic changes of water bodies is critical for ecosystem balance maintenance, sustainable human development, and early warning of floods and droughts. However, current research primarily focuses on the static monitoring of inland water bodies, lacking high-resolution monitoring of dynamic changes in water bodies. Hence, relying on the Google Earth Engine (GEE) cloud computing platform, this study monitored the dynamic changes of water bodies at a spatial resolution of 10 m, with the Sentinel-2 surface reflectance data in 2020 as the data source. First, the optimal water body monitoring features were selected by examining the features of typical land cover types in Sentinel-2 spectral bands and water indices. Then, an automatic extraction method for water body training datasets was proposed in conjunction with priori water body products, obtaining high-confidence water body training samples. Furthermore, the spectral angle (SA) and Euclidean distance (ED) methods were integrated based on the Dempster-Shafer (D-S) evidence theory model, and a SA-ED dynamic monitoring model for water bodies was developed combined with the extracted optimal water body monitoring features. Finally, the stability of the SA-ED model was tested with Henan Province as a study area, demonstrating that the SA-ED model can effectively monitor the dynamic changes in water bodies. The SA-ED model yielded an overall monitoring accuracy of 97.03% for water bodies in Henan Province, with user accuracy of 95.85% and producer accuracy of 95.17% for permanent water bodies, user and producer accuracies of 96.21% and 93.82% for seasonal water bodies, respectively. The results of this study provide a novel approach for the fine-resolution monitoring of dynamic changes in water bodies.

Key wordsinland water body    water body distribution    dynamic monitoring    Google Earth Engine    Sentinel-2
收稿日期: 2022-11-17      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:河南省高等学校青年骨干教师培养计划项目“融合多源异质数据的南水北调渠道边坡InSAR三维形变测量”(2021GGJS073);中原科技创新领军人才计划资助项目“膨胀土灌渠边坡亲水响应机理研究”(214200510030)
通讯作者: 陈曦东(1994-),男,博士,研究方向为全球地表覆盖制图。Email: chenxd@radi.ac.cn
作者简介: 魏 鑫(2000-),男,学士,研究方向为水体监测。Email: 984241749@qq.com
引用本文:   
魏鑫, 任雨, 陈曦东, 胡青峰, 刘辉, 周婧, 宋冬伟, 张培佩, 黄志全. 基于时序Sentinel-2数据水体动态变化监测——以河南省为例[J]. 自然资源遥感, 2024, 36(2): 268-278.
WEI Xin, REN Yu, CHEN Xidong, HU Qingfeng, LIU Hui, ZHOU Jing, SONG Dongwei, ZHANG Peipei, HUANG Zhiquan. Monitoring of dynamic changes in water bodies of Henan Province based on time-series Sentinel-2 data. Remote Sensing for Natural Resources, 2024, 36(2): 268-278.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022445      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/268
Fig.1  研究区与测试区域概况示意图
水体分类精度 Landsat5 Landsat7 Landsat8
总体 季节性 稳定性 总体 季节性 稳定性 总体 季节性 稳定性
用户精度 99.45 98.80 99.56 99.35 98.38 99.50 99.54 98.53 99.66
生产者精度 97.01 74.91 98.79 95.79 73.82 97.72 96.25 77.40 99.10
Tab.1  JRC-GSW数据详情
测试区
稳定性水体 49 30 130 82 50
季节性水体 106 113 106 44 107
非水体 645 657 564 674 643
合计 800 800 800 800 800
Tab.2  验证数据集详情
Fig.2  水体动态变化研究流程
Fig.3-1  水体在不同波段与其他地物区分效果
Fig.3-2  水体在不同波段与其他地物区分效果
Fig.4  水体在不同水体指数中同其他地物区分效果
Fig.5  局部区域水体分布
测试区域 稳定性水体 季节性水体 OA
UA PA UA PA
测试区I 95.92 94.00 97.17 95.37 97.13
测试区Ⅱ 93.33 93.33 98.23 95.69 97.25
测试区Ⅲ 98.46 96.97 95.28 98.06 96.63
测试区Ⅳ 97.56 97.56 93.18 85.42 97.25
测试区Ⅴ 94.00 94.00 97.20 94.55 96.88
均值 95.85 95.17 96.21 93.82 97.03
Tab.3  研究结果在5个测试区的精度验证表
Fig.6  本研究结果与JRC-GSW产品精度、误差对比
Tab.4  本研究结果与JRC-GSW产品在所选区的水体监测结果
[1] Palmer S C J, Kutser T, Hunter P D. Remote sensing of inland waters:Challenges,progress and future directions[J]. Remote Sensing of Environment, 2015, 157:1-8.
[2] Carroll M L, Townshend J R, DiMiceli C M, et al. A new global raster water mask at 250 m resolution[J]. International Journal of Digital Earth, 2009, 2(4):291-308.
[3] Postel S L. Entering an era of water scarcity:The challenges ahead[J]. Ecological Applications, 2000, 10(4):941.
[4] Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle:Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1):172-185.
[5] Li J, Wang S, Wu Y, et al. MODIS observations of watercolor of the largest 10 lakes in China between 2000 and 2012[J]. International Journal of Digital Earth, 2016, 9(8):788-805.
[6] Wang X B, Xie S P, Zhang X L, et al. A robust multi-band water index (MBWI) for automated extraction of surface water from Landsat8 OLI imagery[J]. International Journal of Applied Earth Observation and Geoinformation. 2018, 68:73-91.
[7] Sharma R C, Tateishi R, Hara K, et al. Developing superfine water index (SWI) for global water cover mapping using MODIS data[J]. Remote Sensing, 2015, 7(10):13807-13841.
[8] 王随霞. 基于MODIS数据的黄河下游洪水遥感监测研究[D]. 南京: 河海大学, 2006.
Wang S X. Remote sensing monitoring of floods in the lower reaches of the Yellow River based on MODIS data[D]. Nanjing: Hohai University, 2006.
[9] 闵文彬. 长江上游MODIS影像的水体自动提取方法[J]. 高原气象, 2004, 23(s1):141-145.
Min W B. A method to identify water-body from MODIS image data in upper reach of Changjiang River[J]. Plateau Meteorology, 2004, 23(s1):141-145.
[10] Sun D, Yu Y, Goldberg M D. Deriving water fraction and flood maps from MODIS images using a decision tree approach[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(4):814-825.
[11] 饶品增, 蒋卫国, 王晓雅. 基于MODIS数据的洪涝灾害分析研究——以2017年洞庭湖区洪水为例[J], 灾害学, 2019, 34(1):203-207.
Rao P Z, Jiang W G, Wang X Y, et al. Flood disaster analysis based on MODIS data-Taking the flood in Dongting Lake Area in 2017 as an example[J]. Journal of Catastrophology, 2019, 34(1):203-207.
[12] 谷娟. 基于MODIS像元分解的鄱阳湖水体淹没频率及其植被响应[D]. 杭州: 浙江大学, 2018.
Gu J. The change of inundation frequency in Poyang Lake and the response of its wetland vegetation which base on pixels decomposition model in MODIS[D]. Hangzhou: Zhejiang University, 2018.
[13] Cai X, Feng L, Hou X, et al. Remote sensing of the water storage dynamics of large lakes and reservoirs in the Yangtze River Basin from 2000 to 2014[J]. Scientific Reports, 2016, 6:36405.
doi: 10.1038/srep36405 pmid: 27812023
[14] Feng M, Sexton J O, Channan S, et al. A global,high-resolution (30-m) inland water body dataset for 2000:First results of a topographic-spectral classification algorithm[J]. International Journal of Digital Earth, 2016, 9(2):113-133.
[15] Nguyen D D. Water body extraction from multi spectral image by spectral pattern analysis[J]. ISPRS-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012, 39:181-186
[16] 裴亮, 潘丽. Landsat8卫星OLI影像的合肥市水体信息提取方法研究[J]. 测绘与空间地理信息, 2018, 41(9):143-146.
Pei L, Pan L. Study on the method of extracting water information in Hefei based on Landsat8 satellite OLI image[J]. Geomatics & Spatial Information Technology, 2018, 41(9):143-146.
[17] 王春霞, 张俊, 李屹旭, 等. 一种基于Landsat8的多波段组合水体指数模型[J]. 测绘通报, 2022(5):20-25.
doi: 10.13474/j.cnki.11-2246.2022.0135
Wang C X, Zhang J, Li Y X, et al. A multi-band combination water index model based on Landsat8[J]. Bulletin of Surveying and Mapping, 2022(5):20-25.
[18] Wang Y, Ma J, Xiao X, et al. Long-Term dynamic of Poyang Lake surface water:A mapping work based on the Google Earth Engine cloud platform[J]. Remote Sensing, 2019, 11(3):313.
[19] Pekel J F, Cottam A, Gorelick N. et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540:418-422.
[20] 刘诗燕, 蔡晓斌. 结合DEM与淹没频率的水库水体动态遥感提取优化方法[J]. 华中师范大学学报(自然科学版), 2022, 56(3):523-531.
Liu S Y, Cai X B. Reservoir water bodies extraction optimization approach based on DEM and inundation frequency[J]. Journal of Central China Normal University (Natural Sciences), 2022, 56(3):523-531.
[21] 杨育浩. 基于Landsat卫星影像的我国三大淡水湖泊面积提取与年际变化分析[D]. 南京: 南京大学, 2017.
Yang Y H. Decadal inundated area dynamics monitoring and analysis of three typical fresh lakes of China based on Landsat time-series satellite images[D]. Nanjing: Nanjing University, 2017.
[22] 王利平, 张建云, 舒章康, 等. 河南省水资源系统脆弱性时空分异特征研究[J]. 华北水利水电大学学报(自然科学版), 2022, 43(1):9-17.
Wang L P, Zhang J Y, Shu Z K, et al. Study on the spatio-temporal differentiation characteristics of vulnerability of water resources system in Henan Province[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2022, 43(1):9-17.
[23] 徐海军, 魏义长, 许澍, 等. 河南省内四大流域边界提取与水系分析[J]. 灌溉排水学报, 2021, 40(6):125-132.
Xu H J, Wei Y C, Xu S, et al. Identifying catchments and their hydrological boundaries in the four basins within Henan Province[J]. Journal of Irrigation and Drainage, 2021, 40(6):125-132.
[24] 梁爽, 宫兆宁, 赵文吉, 等. 基于多季相Sentinel-2影像的白洋淀湿地信息提取[J]. 遥感技术与应用, 2021, 36(4):777-790.
Liang S, Gong Z N, Zhao W J et al. Information extraction of Baiyangdian wetland based on multi-season Sentinel-2 images[J]. Remote Sensing Technology and Application, 2021, 36(4):777-790.
[25] Qiu S, Zhu Z, He B. Fmask 4.0:Improved cloud and cloud shadow detection in Landsats4-8 and Sentinel-2 imagery[J]. Remote Sensing of Environment, 2019, 231:111205.
[26] Tan B, Masek J G, Wolfe R, et al. Improved forest change detection with terrain illumination corrected Landsat images[J]. Remote Sensing of Environment, 2013, 136:469-483.
[27] Mc Feeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
[28] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI) 提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.
Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
[29] Feyisa G L, Meilby H, Fenshol R, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140:23-35.
[30] Fisher A, Flood N, Danaher T. Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016, 175:167-182.
[31] Jiang W, Ni Y, Pang Z, et al. A new index for identifying water body from Sentinel-2 satellite remote sensing imagery[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2020, 5.3:33-38.
[32] 吴庆双, 汪明秀, 申茜, 等. 基于Sentinel-2 遥感图像的细小水体提取方法研究[J]. 遥感学报, 2019, 23(5):871-882.
Wu Q S, Wang M X, Shen Q, et al. Study on extraction method of small water based on Sentinel-2 remote sensing image[J]. Journal of Remote Sensing, 2019, 23(5):871-882.
[33] Yamazaki D, Trigg M A, Ikeshima D. Development of a global similar to 90 m water body map using multi-temporal Landsat images[J]. Remote Sensing of Environment, 2015, 171:337-351.
[34] 邓文胜, 邵晓莉, 刘海, 等. 基于证据理论的遥感图像分类方法探讨[J]. 遥感学报, 2007, 11(4):568-573.
Deng W S, Shao X L, Liu H, et al. Discussion of remote sensing image classification method based on evidence theory[J]. National Remote Sensing Bulletin, 2008, 11(4):568-573.
[35] Sun W, Liang S. Methodologies for mapping plant functional types[J]. Advances in Land Remote Sensing, 2008:369-393.
[36] 王立民, 雷琳, 邹焕新. 基于D-S证据理论的遥感图像融合变化检测方法[J]. 计算机工程与科学, 2011, 33(7):50-54.
Wang L M, Lei L, Zou H X. The fusion change detection of remote sensing images based on the D-S evidential theory[J]. Computer Engineering & Science, 2011, 33(7):50-54.
[37] 武晋雯, 孙龙彧, 冯锐, 等. 实测光谱和欧氏距离在GF2卫星海冰提取中的应用[J]. 传感技术学报, 2018, 31(10):1598-1603.
Wu J W, Sun L Y, Feng R, et al. Application of measured spectra and euclidean distance in GF2 satellite sea ice extraction[J]. Chinese Journal of Sensors and Actuators, 2018, 31(10):1598-1603.
[38] 付洪波. 基于光谱角制图法的遥感异常信息提取[J]. 测绘与空间地理信息, 2011, 34(6):82-84.
Fu H B. Abnormal information extraction from remote sensing image based on spectral angle mapping[J]. Geomatics & Spatial Information Technology, 2011, 34(6):82-84.
[39] 李冰, 康宁. 洪水预报调度系统在鸭河口水库防汛调度中的应用[J]. 江西建材, 2016(21):130-131.
Li B, Kang N. Application of flood prediction and dispatch system in flood control dispatch of Yahekou reservoir[J]. Jiangxi Building Materials, 2016(21):130-131.
[1] 薛志泳, 田震, 朱建华, 赵阳. 基于Google Earth Engine的八门湾红树林年际变化监测[J]. 自然资源遥感, 2024, 36(2): 279-286.
[2] 冯倩, 张佳华, 邓帆, 吴贞江, 赵恩灵, 郑培鑫, 韩杨. 基于特征优选和时空融合算法的黄河三角洲湿地类别制图方法研究[J]. 自然资源遥感, 2024, 36(2): 39-49.
[3] 张闻松, 朱雨欣, 邱玉宝, 王裕涵, 刘金昱, 杨康. 全格陵兰冰盖表面融水卫星遥感观测[J]. 自然资源遥感, 2024, 36(1): 110-117.
[4] 宋英旭, 邹昱嘉, 叶润青, 贺志霞, 王宁涛. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024, 36(1): 154-161.
[5] 刘美艳, 聂胜, 王成, 习晓环, 程峰, 冯宝坤. 基于ICESat-2和Sentinel-2A数据的森林蓄积量反演[J]. 自然资源遥感, 2024, 36(1): 210-216.
[6] 李光哲, 王浩, 曹银璇, 张晓宇, 宁晓刚. 长株潭城市群生态环境质量时空演变及影响因素分析[J]. 自然资源遥感, 2023, 35(4): 244-254.
[7] 陈健, 李虎, 刘玉锋, 常竹, 韩伟杰, 刘赛赛. 基于Sentinel-2数据多特征优选的农作物遥感识别研究[J]. 自然资源遥感, 2023, 35(4): 292-300.
[8] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[9] 侯英卓, 纪灵, 邢前国, 盛德志. 卫星遥感辅助的大型海藻养殖动态对比监测——以威海市为例[J]. 自然资源遥感, 2023, 35(2): 34-41.
[10] 于森, 贾明明, 陈高, 鲁莹莹, 李毅, 张博淳, 路春燕, 李慧颖. 基于LandTrendr算法海南东寨港红树林扰动研究[J]. 自然资源遥感, 2023, 35(2): 42-49.
[11] 朱琳, 黄玉玲, 杨刚, 孙伟伟, 陈超, 黄可. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2): 50-60.
[12] 田晨, 张金龙, 金义蓉, 董世元, 王彬, 张乃祥. 一种利用贝叶斯优化的蓝藻遥感分类方法[J]. 自然资源遥感, 2023, 35(1): 49-56.
[13] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[14] 李毅, 程丽娜, 鲁莹莹, 张博淳, 于森, 贾明明. 基于最大值合成和最大类间方差法莱州湾滨海滩涂变化研究[J]. 自然资源遥感, 2022, 34(4): 68-75.
[15] 高俊华, 邹联学, 龙欢, 楚水滔. 基于遥感动态监测的吉林省矿山地质环境及生态修复变化特征分析[J]. 自然资源遥感, 2022, 34(3): 240-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发