Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 213-220    DOI: 10.6046/zrzyyg.2023220
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于机器学习的FY-4A气溶胶光学厚度反演
陈薪(), 施国萍()
南京信息工程大学地理科学学院,南京 210044
Machine learning-based inversion of aerosol optical depth inversion from FY-4A data
CHEN Xin(), SHI Guoping()
School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
全文: PDF(4710 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 我国新一代静止气象卫星FY-4A搭载了先进静止轨道辐射成像仪(advanced geostationary radiation imager,AGRI),为了针对AGRI数据的特点开发基于机器学习算法的高时空分辨率AGRI气溶胶数据集,利用2021年中国及周边地区67个全球地基气溶胶自动观测网络系统(aerosol robotic network,AERONET)站点数据,选取AGRI数据中表观反射率数据、观测角度数据、高程和MODIS的地表反射率等因子,采用随机森林(random forest,RF)、梯度增强回归(gradient boosting regression tree,GBRT)、极端梯度增强(extrme gradient boosting,XGBoost)和反向传播神经网络(back propagation neural network,BPNN)4种机器学习方法反演气溶胶光学厚度(aerosol optical depth,AOD)。根据模型评价指标选择最优模型,实现基于FY-4A的AOD反演,空间分辨率4 km,并与时刻相近的MODIS气溶胶产品进行对比分析。结果表明: 4种机器学习建立的AOD反演模型相关系数R均在0.90以上,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)均在0.09和0.14以下,机器学习模型对AOD反演具有一定的可行性; GBRT模型在4种机器学习中反演精度最优,验证误差中R为0.82,MAE为0.16,RMSE为0.25,47%的反演结果落在期望误差内,表明GBRT反演出的FY-4A AOD与站点观测值基本一致; 将GBRT模型反演的AOD结果与MODIS气溶胶产品进行对比验证,发现FY-4A AOD反演结果与MODIS AOD在空间分布上具有较好的一致性,83.57%的网格偏差集中在[-1.0,0)之间,FY-4A AOD反演值相对MODIS AOD略高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈薪
施国萍
关键词 机器学习气溶胶光学厚度FY-4A/AGRI数据AERONETMODIS AOD产品    
Abstract

This study aims to develop a machine learning algorithm based on the characteristics of AGRI data to generate an aerosol dataset with a high spatiotemporal resolution. Using aerosol data from 67 aerosol robotic network (AERONET) sites in China and its surrounding areas in 2021, this study selected data of factors such as apparent reflectance, observation angles, elevation, and MODIS surface reflectance acquired from FY-4A advanced geostationary radiation imager (AGRI)-a new generation geostationary meteorological satellite of China. Then, this study performed the inversion of aerosol optical depth (AOD) using four machine learning methods-random forest (RF), gradient boosting regression tree (GBRT), extreme gradient boosting (XGBoost), and back propagation neural network (BPNN). Using the optimal model determined based on evaluation metrics, this study achieved the AOD inversion with a spatial resolution of 4 km × 4 km based on FY-4A data. Then, this study compared the inversion results with MODIS aerosol products of roughly the same periods. The results indicate that the AOD inversion models based on the four machine learning algorithms yielded correlation coefficients (R) exceeding 0.90, mean absolute errors (MAEs) of less than 0.09, and root mean square errors (RMSE) below 0.14. This indicates that it is feasible to conduct AOD inversion using machine learning-based models. The GBRT-based model exhibited the highest inversion accuracy among the four methods, with a correlation coefficient of 0.82, MAE of 0.16, and RMSE of 0.25, as indicated by the verification results. Additionally, 47% of the inversion results fell within the expected error ranges, indicating that the results of AOD inversion from FY-4A data using the GBRT-based model were generally consistent with observed values. The comparison between the GBRT model-derived AOD inversion results and the results of MODIS aerosol products shows that the former exhibited high consistency with the latter in terms of spatial distribution, with 83.57% of grid deviations falling within the range from -1.0 to 0 and the former slightly higher than the latter.

Key wordsmachine learning    AOD    FY-4A/AGRI    AERONET    MODIS AOD
收稿日期: 2023-07-20      出版日期: 2025-02-17
ZTFLH:  TP79  
  X513  
基金资助:国家自然科学基金青年项目“基于SUNFLUX辐射参数化计算方案的起伏地形云天实际地表太阳辐射分布式模拟研究及其在陆面过程中的应用”(41805083)
通讯作者: 施国萍(1984-),女,博士,副教授,主要从事3S集成与气象应用研究。Email: shiguopingnj@163.com
作者简介: 陈 薪(1999-),女,硕士研究生,主要从事3S集成与气象应用研究。Email: cx15151838939@163.com
引用本文:   
陈薪, 施国萍. 基于机器学习的FY-4A气溶胶光学厚度反演[J]. 自然资源遥感, 2025, 37(1): 213-220.
CHEN Xin, SHI Guoping. Machine learning-based inversion of aerosol optical depth inversion from FY-4A data. Remote Sensing for Natural Resources, 2025, 37(1): 213-220.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023220      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/213
Fig.1  研究区及站点分布
通道序号 通道类型 中心波长/μm 光谱带宽/μm 主要用途
B1 可见光与近红外 0.47 0.45~0.49 气溶胶
B2 0.65 0.55~0.75 植被
B3 0.825 0.75~0.90 植被
B4 短波红外 1.375 1.36~1.39 卷云
B5 1.61 1.58~1.64 云、雪
B6 2.25 2.1~2.35 卷云、气溶胶
B7 中波红外 3.75 3.5~4.0(高) 火点
B8 3.75 3.5~4.0(低) 地表
B9 水汽 6.25 5.8~6.7 云导风
B10 7.1 6.9~7.3 云导风
B11 长波红外 8.5 8.0~9.0 云导风、云
B12 13.5 13.2~13.8 云顶高度
Tab.1  AGRI数据波段
Fig.2  特征重要性
Fig.3  BPNN,RF,XGBoost 和GBRT 模型反演的AOD与地基数据的建模结果散点图
Fig.4  BPNN,RF,XGBoost 和GBRT 模型反演的AOD与地基数据的验证结果散点图
时间 R MAE RMSE =EE/% >EE/% <EE/%
2022年7月 0.748 8 0.120 6 0.188 6 52 20 28
2022年10月 0.826 9 0.117 8 0.182 8 56 12 32
2023年1月 0.903 7 0.125 3 0.197 8 51 6 43
2023年4月 0.802 2 0.251 3 0.364 7 32 2 66
Tab.2  分月验证表
Fig.5  MODIS/Terra,MODIS/Aqua和FY-4A/AGRI产品区域分布对比
Fig.6  MODIS AOD与FY-4A AOD的频率差异直方图
[1] Mishra M K, Rathore P S, Misra A, et al. Atmospheric correction of multispectral VNIR remote sensing data:Algorithm and inter-sensor comparison ofAerosol and surface reflectance products[J]. Earth and Space Science, 2020, 7(9):e2019EA000710.
[2] Xie Y, Xue Y, Guang J, et al. Deriving a global and hourly data set of aerosol optical depth over land using data from four geostationary satellites:GOES-16,MSG-1,MSG-4,and himawari-8[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):1538-1549.
[3] Sosnowski T R. Aerosols and human health:A multiscale problem[J]. Chemical Engineering Science, 2023,268:118407.
[4] Kaufman Y J, Wald A E, Remer L A, et al. The MODIS 2.1-/ spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1286-1298.
[5] Levy R C, Remer L A, Mattoo S, et al. Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D13):211-231.
[6] Hsu N C, Tsay S C, King M D, et al. Aerosol properties over bright-reflecting source regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):557-569.
[7] Hsu N C, Tsay S C, King M D, et al. Deep blue retrievals of Asian aerosol properties during ACE-asia[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11):3180-3195.
[8] Chen Q X, Han X L, Gu Y, et al. Evaluation of MODIS,MISR,and VIIRS daily level-3 aerosol optical depth products over land[J]. Atmospheric Research, 2022,265:105810.
[9] Gao L, Chen L, Li C, et al. Evaluation and possible uncertainty source analysis of JAXA Himawari-8 aerosol optical depth product over China[J]. Atmospheric Research, 2021,248:105248.
[10] 胡秀清, 卢乃锰, 邱红. FY-1C/1D全球海上气溶胶业务反演算法研究[J]. 海洋学报, 2006, 28(2):56-65.
Hu X Q, Lu N M, Qiu H. Development of aerosol retrieval algorithm over global ocean using FY-1C/1D data[J]. Acta Oceanologica Sinica, 2006, 28(2):56-65.
[11] 任通, 高玲, 李成才, 等. 利用风云2C静止卫星可见光资料反演气溶胶光学厚度[J]. 北京大学学报(自然科学版), 2011, 47(4):636-646.
Ren T, Gao L, Li C C, et al. Retrieval of aerosol optical depth from Fengyun-2C geostationary satellite observation:Theory and implementation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(4):636-646.
[12] 刘智超, 王健, 张鹏, 等. 风云三号卫星气溶胶光学厚度产品的适用性验证[J]. 环境监测管理与技术, 2023, 35(2):18-22.
Liu Z C, Wang J, Zhang P, et al. Verification of aerosol optical depth observed by FY-3 satellite[J]. The Administration and Technique of Environmental Monitoring, 2023, 35(2):18-22.
[13] Saide P E, Kim J, Song C H, et al. Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations[J]. Geophysical Research Letters, 2014, 41(24):9188-9196.
[14] 许梦婕. FY-4A气象卫星对京津冀地区AOD的反演方法研究[D]. 南京: 南京信息工程大学, 2021.
Xu M J. Study on inversion method of AOD in Beijing-Tianjin-Hebei region by FY-4A meteorological satellite[D]. Nanjing: Nanjing University of Information Science & Technology, 2021.
[15] Jiang X, Xue Y, Jin C, et al. A simple band ratio library (BRL) algorithm for retrieval of hourly aerosol optical depth using FY-4A AGRI geostationary satellite data[J].Remote Sensing, 2022, 14(19):4861.
[16] 陈兴峰, 郑逢杰, 郭丁, 等. 气溶胶定量遥感的机器学习方法综述[J]. 遥感学报, 2021, 25(11):2220-2233.
Chen X F, Zheng F J, Guo D, et al. Review of machine learning methods for aerosol quantitative remote sensing[J]. National Remote Sensing Bulletin, 2021, 25(11):2220-2233.
[17] Ristovski K, Vucetic S, Obradovic Z. Uncertainty analysis of neural-network-based aerosol retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):409-414.
[18] Levy R C, Remer L A, Kleidman R G, et al. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land[J]. Atmospheric Chemistry and Physics, 2010, 10(21):10399-10420.
[19] Ding H, Zhao L, Liu S, et al. FY-4A/AGRI aerosol optical depth retrieval capability test and validation based on NNAeroG[J]. Remote Sensing, 2022, 14(21):5591.
[20] Yuan Q, Shen H, Li T, et al. Deep learning in environmental remote sensing:Achievements and challenges[J]. Remote Sensing of Environment, 2020,241:111716.
[21] Eck T F, Holben B N, Reid J S, et al. Wavelength dependence of the optical depth of biomass burning,urban,and desert dust aerosols[J]. Journal of Geophysical Research:Atmospheres, 1999, 104(D24):31333-31349.
[22] Sun Z, Zhang B, Yao Y. Improving the estimation of weighted mean temperature in China using machine learning methods[J]. Remote Sensing, 2021, 13(5):1016.
[23] 高阿芳. 基于改进随机森林的耕深预测模型研究[D]. 长春: 长春工业大学, 2022.
Gao A F. Research on prediction model of tillage depth based on an improved random forest[D]. Changchun: Changchun University of Technology, 2022.
[24] Levy R C, Mattoo S, Munchak L A, et al. The Collection 6 MODIS aerosol products over land and ocean[J]. Atmospheric Measurement Techniques, 2013, 6(11):2989-3034.
[25] Levy R C, Munchak L A, Mattoo S, et al. Towards a long-term global aerosol optical depth record:Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance[J]. Atmospheric Measurement Techniques, 2015, 8(10):4083-4110.
[26] Sawyer V, Levy R C, Mattoo S, et al. Continuing the MODIS dark target aerosol time series with VIIRS[J]. Remote Sensing, 2020, 12(2):308.
[27] Chen Y, Fan M, Li M, et al. Himawari-8/AHI aerosol optical depth detection based on machine learning algorithm[J]. Remote Sensing, 2022, 14(13):2967.
[28] 陈岚琪. 基于GWR的郑州市域林地景观格局、气象与气溶胶光学厚度的空间关系研究[D]. 郑州: 河南农业大学, 2020.
Chen L Q. Spatial relationship among forest landscape pattern,meteorology and aerosol based on GWR model in Zhengzhou City[D]. Zhengzhou: Henan Agricultural University, 2020.
[29] 杨阳, 赵娜, 岳天祥. 1980—2018年中国极端高温事件时空格局演变特征[J]. 地理科学, 2022, 42(3):536-547.
doi: 10.13249/j.cnki.sgs.2022.03.018
Yang Y, Zhao N, Yue T X. Spatio-temporal variations of extreme high temperature event in China from 1980 to 2018[J]. Scientia Geographica Sinica, 2022, 42(3):536-547.
doi: 10.13249/j.cnki.sgs.2022.03.018
[30] Xue R, Ai B, Lin Y, et al. Spatial and temporal distribution of aerosol optical depth and its relationship with urbanization in Shandong Province[J]. Atmosphere, 2019, 10(3):110.
[31] Zhao C, Wang Y, Shi X, et al. Estimating the contribution of local primary emissions to particulate pollution using high-density station observations[J]. Journal of Geophysical Research:Atmospheres, 2019, 124(3):1648-1661.
[32] Jin Q, Wei J, Yang Z L, et al. Consistent response of Indian summer monsoon to Middle East dust in observations and simulations[J]. Atmospheric Chemistry and Physics, 2015, 15(17):9897-9915.
[1] 胡博洋, 孙建国, 张倩, 杨云睿. 用于植被变化归因的区域机器学习残差趋势法[J]. 自然资源遥感, 2025, 37(1): 46-53.
[2] 张冬韵, 吴田军, 李曼嘉, 郭逸飞, 骆剑承, 董文. 地块尺度农作物遥感分类及其不确定性分析[J]. 自然资源遥感, 2024, 36(4): 124-134.
[3] 缪晨阳, 陈健, 马本浩. 基于数据场模型的南京市气溶胶光学厚度反演[J]. 自然资源遥感, 2024, 36(4): 295-303.
[4] 张春桂, 彭继达. 基于气象和遥感的空气清新度监测技术研究[J]. 自然资源遥感, 2024, 36(3): 163-173.
[5] 王煜淼, 李胜, 东春宇, 杨刚. 多特征参数支持的红树林遥感信息提取——以广东省为例[J]. 自然资源遥感, 2024, 36(1): 95-102.
[6] 黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
[7] 李显风, 袁正国, 邓卫华, 杨立苑, 周雪莹, 胡丽丽. 融合多种机器学习模型的2 m气温空间降尺度方法[J]. 自然资源遥感, 2023, 35(1): 57-65.
[8] 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
[9] 孟清, 白红英, 赵婷, 郭少壮, 齐贵增. 秦岭山地对气溶胶的生态屏障效应[J]. 国土资源遥感, 2021, 33(1): 240-248.
[10] 施益强, 邓秋琴, 吴君, 王坚. 厦门市MODIS气溶胶光学厚度与空气质量指数的回归分析[J]. 国土资源遥感, 2020, 32(1): 106-114.
[11] 李恺霖, 张春桂, 廖廓, 李丽纯, 王宏. 福建省空气清新度卫星遥感监测[J]. 国土资源遥感, 2019, 31(4): 151-158.
[12] 周询, 王跃宾, 刘素红, 于佩鑫, 王西凯. 一种遥感影像自动识别耕地类型的机器学习算法[J]. 国土资源遥感, 2018, 30(4): 68-73.
[13] 张明明, 程东兵, 齐建华, 胡建春, 罗晶. 基于卫星遥感的池州市气溶胶光学厚度时空分布[J]. 国土资源遥感, 2017, 29(4): 147-155.
[14] 范东福, 杨书运, 吴必文, 范东勤, 王俊, 江波, 陈晓龙. 基于AOD数据的秸秆焚烧监测[J]. 国土资源遥感, 2015, 27(2): 133-138.
[15] 佃袁勇, 方圣辉, 徐永荣. 一种协同反演气溶胶与水汽含量的高光谱图像大气校正算法[J]. 国土资源遥感, 2015, 27(2): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发