Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 15-23    DOI: 10.6046/zrzyyg.2023230
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种边界引导与跨尺度信息交互网络用于遥感影像水体提取
陈佳雪(), 肖东升1,2(), 陈虹宇3
1.西南石油大学土木工程与测绘学院,成都 610500
2.西南石油大学测绘遥感地理信息防灾应急研究中心,成都 610500
3.西南交通大学地球科学与环境工程学院,成都 611756
A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images
CHEN Jiaxue(), XIAO Dongsheng1,2(), CHEN Hongyu3
1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2. Disaster Prevention and Emergency Research Center of Geographic and Remote Sensing Geographic Information, Southwest Petroleum University, Chengdu 610500, China
3. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
全文: PDF(4711 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

准确的水体提取对水资源保护、城市规划等方面具有重要的意义。然而,在遥感影像中,由于地物众多、环境复杂且不同水体可能具有不同形态、尺度及光谱特征,水体难免会与其他地物产生类内异质性及类间相似性。现有方法未充分探索边界线索以及未充分利用不同层之间的语义相关性及多尺度表达,导致从遥感影像中准确提取水体仍然是一项挑战性任务。针对这些问题,本文提出了一种边界引导与跨尺度信息交互网络(boundary guidance and cross-scale information interaction network,BGCIINet)用于遥感影像水体提取。首先,本文首次结合Sobel算子提出了一个边界引导(boundary guidance,BG)模块,该模块可以有效捕获低层次特征中的边界线索并高效嵌入解码器为其提供丰富的边界知识; 其次,为了加强网络多尺度表达能力,促进层与层之间的信息交流,提出了一个跨尺度信息交互(cross-scale information interaction,CII)模块。在2个数据集上进行了广泛实验,结果表明: 本文方法优于其他4种先进方法,在面对挑战性的场景时具有更丰富的边界细节及完整度,能够更好地应用于遥感影像水体提取并为后续研究提供方法借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈佳雪
肖东升
陈虹宇
关键词 水体提取边界引导跨尺度特征遥感影像语义分割    
Abstract

Extracting accurate water body information holds great significance for water resources protection and urban planning. However, due to numerous surface features and complex environments, along with different morphologies, scales, and spectral characteristics of different water bodies, remote sensing images inevitably exhibit heterogeneity, spectral similarities, and inter-class similarities between water bodies and other surface features. Existing methods fail to fully exploit boundary cues, the semantic correlation between different layers, and multi-scale representations, rendering the accurate information extraction of water bodies from remote sensing images still challenging. This study proposed a boundary guidance and cross-scale information interaction network (BGCIINet) for information extraction of water bodies from remote sensing images. First, this study proposed a boundary guidance (BG) module for the first time by combing the Sobel operator. This module can be used to effectively capture boundary cues in low-level features and efficiently embed these cues into a decoder to produce rich boundary information. Second, a cross-scale information interaction (CII) module was introduced to enhance the multi-scale representation capability of the network and facilitate information exchange between layers. Extensive experiments on two datasets demonstrate that the proposed method outperforms four state-of-the-art methods, offering rich boundary details and completeness under challenging scenarios. Therefore, the proposed method is more effective in extracting water body information from remote sensing images. This study will provide a valuable reference of methods for future research.

Key wordswater body extraction    boundary guidance    cross-scale features    remote sensing images    semantic segmentation
收稿日期: 2023-07-24      出版日期: 2025-02-17
ZTFLH:  TP79  
基金资助:四川省区域创新合作项目“基于智能手机的城市地震应急建筑物内人口估计与精准定位方法及应用”(23QYCX0053)
通讯作者: 肖东升(1974-),男,博士,教授,研究方向为测绘遥感地理信息防灾应急。Email: xiaodsxds@163.com
作者简介: 陈佳雪(2000-),女,硕士研究生,主要研究方向为测绘遥感地理信息防灾应急。Email: chenjiaxue1005@163.com
引用本文:   
陈佳雪, 肖东升, 陈虹宇. 一种边界引导与跨尺度信息交互网络用于遥感影像水体提取[J]. 自然资源遥感, 2025, 37(1): 15-23.
CHEN Jiaxue, XIAO Dongsheng, CHEN Hongyu. A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images. Remote Sensing for Natural Resources, 2025, 37(1): 15-23.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023230      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/15
Fig.1  BGCIINet的整体框架
Fig.2  BG模块具体框架
Fig.3  CII模块具体框架
参数 DeepGlobe LandCover
影像大小/像素 2 048×2 048 最大为9 000×9 500
分辨率/m 0.5 0.25和0.5
影像来源 卫星影像 航空影像
Tab.1  DeepGlobe数据集与LandCover数据集的详细信息
Tab.2  数据集部分样本
Fig.4  经过BG模块前后可视化特征图
Fig.5  经过CII模块前后可视化特征图
方法 IoU F1 Precision Recall OA
Attention Unet 82.62 90.48 92.78 88.30 96.62
PSPNet 88.66 93.99 94.77 93.23 97.83
DANet 81.52 89.82 90.38 89.27 96.32
DeepLabV3+ 93.59 96.69 97.00 96.37 98.80
本文方法 94.67 97.26 97.76 96.77 99.01
Tab.3  DeepGlobe数据集上的定量比较
方法 IoU F1 Precision Recall OA
Attention Unet 86.13 92.55 94.88 90.33 95.94
PSPNet 92.18 95.93 96.25 95.62 97.74
DANet 84.60 91.66 92.64 90.70 95.39
DeepLabV3+ 91.99 95.83 94.63 97.06 97.64
本文方法 95.41 97.65 97.30 98.01 98.68
Tab.4  LandCover数据集上的定量比较
场景类型 影像 Attention Unet PSPNet DANet DeepLabV3+ 本文方法
低对比度、光谱相似
不规则水体
小型水体
类间相似性
类内异质性
Tab.5  不同挑战性场景下的可视化结果
方法 参数量/106 浮点运
算数/109
模型大
小/MB
FPS/
(帧· s - 1)
Attention Unet 34.88 266.27 133.11 35.09
PSPNet 25.35 20.09 97.91 189.22
DANet 66.55 282.83 262.11 76.70
DeepLabV3+ 22.34 31.55 85.28 182.54
本文方法 21.95 48.45 83.82 114.49
Tab.6  效率与复杂度比较
方法 IoU/% F1/% OA/% 参数
量/106
浮点运
算数/109
基线网络 90.51 95.02 98.18 21.66 31.22
去除BG模块 92.78 96.25 98.64 21.76 47.21
去除CII模块 92.83 96.28 98.65 21.85 32.47
本文方法 94.67 97.26 99.01 21.95 48.45
Tab.7  消融实验结果
Fig.6  模块的功能可视化分析
[1] Wu Z, Lai X, Li K. Water quality assessment of rivers in Lake Chaohu basin (China) using water quality index[J]. Ecological Indicators, 2021,121:107021.
[2] 杨聪, 童蕾, 马乃进, 等. 洪湖水体和沉积物中抗生素的分布特征及其影响因素研究[J]. 安全与环境工程, 2022, 29(5):78-90.
Yang C, Tong L, Ma N J, et al. Distribution characteristics and influencing factors of antibiotics in water and sediments of Honghu Lake[J]. Safety and Environmental Engineering, 2022, 29(5):78-90.
[3] Verma U, Chauhan A, M M M P, et al. DeepRivWidth:Deep learning based semantic segmentation approach for river identification and width measurement in SAR images of Coastal Karnataka[J]. Computers & Geosciences, 2021,154:104805.
[4] 杜云艳, 周成虎. 水体的遥感信息自动提取方法[J]. 遥感学报, 1998, 2(4):264-269.
Du Y Y, Zhou C H. Automatically extracting remote sensing information for water body[J]. Journal of Remote Sensing, 1998, 2(4):264-269.
[5] Koponen S, Pulliainen J, Kallio K, et al. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data[J]. Remote Sensing of Environment, 2002, 79(1):51-59.
[6] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
[7] Xie C, Huang X, Zeng W, et al. A novel water index for urban high-resolution eight-band WorldView-2 imagery[J]. International Journal of Digital Earth, 2016, 9(10):925-941.
[8] Liu Q, Huang C, Shi Z, et al. Probabilistic river water mapping from landsat-8 using the support vector machine method[J]. Remote Sensing, 2020, 12(9):1374.
[9] Wang X, Ling F, Yao H, et al. Unsupervised sub-pixel water body mapping with sentinel-3 OLCI image[J]. Remote Sensing, 2019, 11(3):327.
[10] Weng L, Xu Y, Xia M, et al. Water areas segmentation from remote sensing images using a separable residual SegNet network[J]. ISPRS International Journal of Geo-Information, 2020, 9(4):256.
[11] Guo H, He G, Jiang W, et al. A multi-scale water extraction convolutional neural network (MWEN) method for GaoFen-1 remote sensing images[J].ISPRS International Journal of Geo-Information, 2020, 9(4):189.
[12] Li M, Wu P, Wang B, et al. A deep learning method of water body extraction from high resolution remote sensing images with multisensors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:3120-3132.
[13] Dong S, Pang L, Zhuang Y, et al. Optical remote sensing water-land segmentation representation based on proposed SNS-CNN network[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.July 28 - August 2, 2019, Yokohama,Japan.IEEE,2019:3895-3898.
[14] Hu K, Li M, Xia M, et al. Multi-scale feature aggregation network for water area segmentation[J]. Remote Sensing, 2022, 14(1):206.
[15] Kang J, Guan H, Peng D, et al. Multi-scale context extractor network for water-body extraction from high-resolution optical remotely sensed images[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,103:102499.
[16] Wang Z, Gao X, Zhang Y. HA-net:A lake water body extraction network based on hybrid-scale attention and transfer learning[J]. Remote Sensing, 2021, 13(20):4121.
[17] 张庆港, 张向军, 余海坤, 等. 一种轻量级网络模型的遥感水体提取方法[J]. 测绘科学, 2022, 47(11):64-72.
Zhang Q G, Zhang X J, Yu H K, et al. A water extraction method for remote sensing with lightweight network model[J]. Science of Surveying and Mapping, 2022, 47(11):64-72.
[18] Zhang Z, Lu M, Ji S, et al. Rich CNN features for water-body segmentation from very high resolution aerial and satellite imagery[J]. Remote Sensing, 2021, 13(10):1912.
[19] 沈骏翱, 马梦婷, 宋致远, 等. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4):129-135.doi:10.6046/zrzyyg.2021357.
Shen J A, Ma M T, Song Z Y, et al. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4):129-135.doi:10.6046/zrzyyg.2021357.
[20] 林娜, 王玉莹, 郭江, 等. 基于SegNet_CRF的遥感影像水体提取方法[J]. 测绘与空间地理信息, 2023, 46(3):12-15,18.
Lin N, Wang Y Y, Guo J, et al. A method of water extraction from remote sensing images based on SegNet_CRF[J]. Geomatics & Spatial Information Technology, 2023, 46(3):12-15,18.
[21] 李红林, 隋百凯, 叶燕萍, 等. 基于语义分割网络的GF-7号卫星数据水体信息提取[J]. 大坝与安全, 2022(4):50-58.
Li H L, Sui B K, Ye Y P, et al. Water information extraction from GF-7 satellite data based on semantic segmentation network[J]. Dam & Safety, 2022(4):50-58.
[22] 刘佳典, 宋伟东, 朱洪波, 等. 改进U-Net模型的遥感影像水体提取研究[J]. 测绘科学, 2022, 47(8):230-239.
Liu J D, Song W D, Zhu H B, et al. Research on water extraction from remote sensing images based on improved U-Net model[J]. Science of Surveying and Mapping, 2022, 47(8):230-239.
[23] Wang B, Chen Z, Wu L, et al. SADA-net:A shape feature optimization and multiscale context information-based water body extraction method for high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022,15:1744-1759.
[24] Boguszewski A, Batorski D, Ziemba-Jankowska N, et al. LandCover.ai:Dataset for automatic mapping of buildings,woodlands,water and roads from aerial imagery[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) June 19-25,2021, Nashville,TN,USA.IEEE,2021:1102-1110.
[25] Demir I, Koperski K, Lindenbaum D, et al.DeepGlobe 2018:A challenge to parse the earth through satellite images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). June 18-22,2018, Salt Lake City,UT,USA.IEEE,2018:172-17209.
[26] Oktay O, Schlemper J, Le Folgoc L, et al. Attention U-net:Learning where to look for the pancreas[EB/OL]. 2018:1804.03999.https://arxiv.org/abs/1804.03999v3.
[27] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) July 21-26,2017, Honolulu,HI,USA.IEEE,2017:6230-6239.
[28] Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15-20,2019, Long Beach,CA,USA.IEEE,2019:3141-3149.
[29] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing,2018:833-851.
[1] 王体鑫, 杨金中, 邢宇, 王开建. 基于ArcPy与图面优化的国家级自然保护地遥感监测成果自动制图方法[J]. 自然资源遥感, 2025, 37(1): 252-259.
[2] 刘晨晨, 葛小三, 武永斌, 余海坤, 张蓓蓓. 基于混合注意力机制和Deeplabv3+的遥感影像建筑物提取方法[J]. 自然资源遥感, 2025, 37(1): 31-37.
[3] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[4] 罗鑫, 王崇倡, 孙尚宇. 面向水体浅水区遥感识别的水体指数NMBWI研究[J]. 自然资源遥感, 2024, 36(4): 142-148.
[5] 潘俊杰, 慎利, 鄢薪, 聂欣, 董宽林. 一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法[J]. 自然资源遥感, 2024, 36(4): 149-157.
[6] 李世琦, 姚国清. 基于CNN与SETR的特征融合滑坡体检测[J]. 自然资源遥感, 2024, 36(4): 158-164.
[7] 赵金玲, 黄健, 梁梓君, 赵学丹, 靳涛, 葛行行, 魏晓燕, 邵远征. 基于BDANet的地震灾害建筑物损毁评估[J]. 自然资源遥感, 2024, 36(4): 193-200.
[8] 苏腾飞. 深度卷积语义分割网络在农田遥感影像分类中的对比研究——以河套灌区为例[J]. 自然资源遥感, 2024, 36(4): 210-217.
[9] 邰佳怡, 慎利, 乔文凡, 周吾珍. 不同上下文比例对损毁建筑遥感场景图片样本集构建的影响[J]. 自然资源遥感, 2024, 36(3): 154-162.
[10] 罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
[11] 于淼, 荆虹波, 王翔, 李兴久. 基于深度特征的多方向目标检测研究[J]. 自然资源遥感, 2024, 36(3): 267-271.
[12] 冯思维, 杨清华, 贾伟洁, 王梦飞, 刘蕾. 基于光学遥感的内陆地表水体提取综述[J]. 自然资源遥感, 2024, 36(3): 41-56.
[13] 温泉, 李璐, 熊立, 杜磊, 刘庆杰, 温奇. 基于深度学习的遥感图像水体提取综述[J]. 自然资源遥感, 2024, 36(3): 57-71.
[14] 白石, 唐攀攀, 苗朝, 金彩凤, 赵博, 万昊明. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3): 96-107.
[15] 赵辉, 陈振, 冯超帆, 张通, 赵学晶, 张兆旭. 基于Landsat影像的鄱阳湖面积监测及其与水位关系研究[J]. 自然资源遥感, 2024, 36(2): 198-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发