Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (4): 40-47    DOI: 10.6046/zrzyyg.2024159
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
利用Sentinel-2光谱指数和改进的单类随机森林的塑料大棚提取方法
肖明珠(), 李培军()
北京大学地球与空间科学学院遥感所,北京 100871
A method for plastic greenhouse extraction integrating Sentinel-2 spectral indices and an improved one-class random forest
XIAO Mingzhu(), LI PeiJjun()
Institute of Remote Sensing and GIS, School of Earth and Space Sciences, Peking University, Beijing 100871, China
全文: PDF(5484 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 塑料大棚在现代农业中得到广泛应用,但其使用也带来了一些生态环境问题。利用遥感数据能够有效进行大范围的塑料大棚提取与识别,但现有的研究常采用分类法或光谱指数法提取塑料大棚,缺乏对2种方法的结合与对比分析。因此,该文提出一种利用多个Sentinel-2光谱指数结合单类分类方法(即改进的单类随机森林)的塑料大棚提取方法。该方法将6种塑料大棚光谱指数作为特征,使用改进的单类随机森林方法提取塑料大棚,并与该文提出的方法进行对比,以验证该方法的有效性。结果表明: 该方法在4个季节图像的提取结果的总体精度(overall accuracy,OA)均在97%以上,Kappa系数高于0.82,F1高于0.84,均高于6个指数的提取精度。同时,该文方法在不同季节提取的OA差异在1%以内,Kappa系数与F1分数的差异在0.1以内,季节稳定性强,均优于单独使用光谱指数的塑料大棚提取结果。研究可为准确监测塑料大棚空间分布提供科学依据和参考意见。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖明珠
李培军
关键词 塑料大棚光谱指数单类随机森林    
Abstract

Plastic greenhouses have gained extensive application in modern agriculture. This, however, gives rise to ecological issues. Remote sensing data enable effective extraction and identification of plastic greenhouses on a large scale. Existing studies largely focus on plastic greenhouse extraction using either classification or spectral indices methods. However, there exists a lack of the combination and comparative analysis of both methods. This study proposed a method for plastic greenhouse extraction that integrates multiple Sentinel-2 spectral indices and a one-class classification method (improved one-class random forest). Furthermore, this study extracted information on plastic greenhouses using an improved one-class random forest method, as well as six spectral indices of plastic greenhouses as classification features. The extraction results were then compared with those of the proposed method to demonstrate the effectiveness of the latter. The results indicate that the proposed method yielded an overall accuracy of above 97% across four seasons, with kappa coefficients exceeding 0.82 and F1 scores of over 0.84. These metrics all were better than those yielded using the six spectral indices. Furthermore, the proposed method exhibited differences in the overall accuracy, kappa coefficient, and F1 score across four seasons of less than 1%, under 0.1, and below 0.1 respectively. This suggests the high seasonal stability of the method, outperforming the extraction results obtained by using spectral indices alone. This study provides a method for accurately monitoring the spatial distribution of plastic greenhouses.

Key wordsplastic greenhouse    spectral index    one-class random forest
收稿日期: 2024-05-09      出版日期: 2025-09-03
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于Landsat多变量时间序列数据的城市变化过程提取与分析”(42071307)
作者简介: 肖明珠(2000-),女,硕士研究生,主要从事遥感信息处理与应用研究。Email: mz_xiao@pku.edu.cn
引用本文:   
肖明珠, 李培军. 利用Sentinel-2光谱指数和改进的单类随机森林的塑料大棚提取方法[J]. 自然资源遥感, 2025, 37(4): 40-47.
XIAO Mingzhu, LI PeiJjun. A method for plastic greenhouse extraction integrating Sentinel-2 spectral indices and an improved one-class random forest. Remote Sensing for Natural Resources, 2025, 37(4): 40-47.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024159      或      https://www.gtzyyg.com/CN/Y2025/V37/I4/40
Fig.1  研究区地理位置及Sentinel-2真彩色图像
波段 描述 S-2A 中心
波长/nm
空间分辨率/m
Band 1 海岸气溶胶 442.7 60
Band 2 蓝光 492.4 10
Band 3 绿光 559.8 10
Band 4 红光 664.6 10
Band 5 红边1 704.1 20
Band 6 红边2 740.5 20
Band 7 红边3 782.8 20
Band 8 近红外 832.8 10
Band 8A 窄近红外 864.7 20
Band 9 水蒸气 945.1 60
Band 10 卷云 1 373.5 60
Band 11 短波红外1 1 613.7 20
Band 12 短波红外2 2 202.4 20
Tab.1  Sentinel-2波段设置及分辨率
图像 塑料大棚样本
数/个
非塑料大棚样本
数/个
春季图像 36 063 236 010
夏季图像 35 401 233 065
秋季图像 36 106 231 574
冬季图像 36 027 232 506
Tab.2  各季节图像塑料大棚及非塑料大棚样本数量
Fig.2  本研究的方法框图
指数名 公式 变量含义
VI V I = R s w i r 1 - R n i r R s w i r 1 + R n i r × R n i r - R r e d R n i r + R r e d R c o a s t a l, R b l u e, R g r e e n, R r e d, R n i r, R s w i r 1, R s w i r 2分别为海岸气溶胶、蓝光、绿光、红光、近红外、短波红外1、短波红外2波段的光谱反射率; λ L P λ R P分别为上述一组波段中最短和最长的波长; R i为波长i对应波段的反射率
PMLI P M L I = R s w i r 1 - R r e d R s w i r 1 + R r e d
MDI M D I = i = λ R P λ L P R i 2 + ( λ R P - i ) 2   - i = λ L P λ R P R i 2 + ( i - λ L P ) 2  
GDI G D I = M D I 3 - R b l u e - ( R s w i r 1 + R s w i r 2 2 ) R b l u e + ( R s w i r 1 + R s w i r 2 2 )
PGI P G I = 0 , N D V I > 0.73 100 × R b l u e × ( R n i r - R r e d ) 1 - R b l u e + R g r e e n + R n i r 3 0 , N D B I > 0.005 ,
APGI A P G I = 100 × R c o a s t a l × R r e d × 2 × R n i r - R r e d - R s w i r 2 2 × R n i r + R r e d + R s w i r 2
Tab.3  本研究使用的塑料大棚指数公式
Fig.3  不同季节塑料大棚光谱曲线
Fig.4  研究区春季不同指数的图像
方法 OA/% Kappa系数 F1分数 塑料大棚 非塑料大棚
UA/% PA/% UA/% PA/%
VI 24.41 -0.069 3 0.101 5 5.68 47.80 81.19 22.12
PMLI 70.19 0.108 7 0.231 3 15.03 50.16 93.65 72.16
MDI 86.54 0.418 3 0.486 8 36.94 71.38 96.91 88.04
GDI 81.42 0.316 7 0.403 8 28.31 70.38 96.60 82.51
PGI 93.57 0.555 0 0.589 2 68.81 51.52 95.36 97.70
APGI 95.22 0.720 6 0.746 9 70.96 78.83 97.90 96.83
本文方法 97.92 0.866 8 0.878 1 92.25 83.78 98.42 99.31
Tab.4  利用春季图像的指数与本文方法的塑料大棚提取精度
方法 OA/% Kappa系数 F1分数
夏季 秋季 冬季 夏季 秋季 冬季 夏季 秋季 冬季
VI 54.16 45.47 11.57 0.013 3 -0.021 6 -0.197 5 0.155 6 0.147 0 0.089 7
PMLI 70.28 76.91 78.93 0.190 9 0.274 6 0.345 8 0.301 6 0.378 9 0.463 8
MDI 91.23 89.96 91.05 0.453 1 0.559 9 0.686 4 0.501 1 0.613 4 0.738 2
GDI 85.00 83.28 85.31 0.338 6 0.303 2 0.520 8 0.414 0 0.390 7 0.604 5
PGI 95.42 93.35 94.83 0.680 5 0.582 1 0.785 7 0.705 0 0.618 0 0.815 8
APGI 94.76 94.41 95.86 0.680 1 0.683 5 0.831 6 0.709 1 0.714 4 0.855 8
本文方法 97.22 97.64 97.56 0.829 9 0.858 8 0.898 8 0.845 1 0.871 7 0.912 9
Tab.5  利用夏、秋、冬季图像的指数与本文方法的塑料大棚提取精度
Fig.5  局部地区春季的Sentinel-2真彩色图像和塑料大棚提取结果
Fig.6  利用本文方法从不同季节图像提取的研究区塑料大棚
[1] Picuno P. Innovative material and improved technical design for a sustainable exploitation of agricultural plastic film[J]. Polymer-Plastics Technology and Engineering, 2014, 53(10):1000-1011.
[2] Li J. Economic analysis of agro-film pollution in Xinjiang region[J]. Bord.Econ.Culture, 2008, 1(1):16-17.
[3] 郑磊, 何直蒙, 丁海勇. 基于ENVINet5的高分辨率遥感影像稀疏塑料大棚提取研究[J]. 遥感技术与应用, 2021, 36(4):908-915.
Zheng L, He Z M, Ding H Y. Research on the sparse plastic shed extraction from high resolution images using ENVINet 5 deep lear-ning method[J]. Remote Sensing Technology and Application, 2021, 36(4):908-915.
[4] Aguilar M A, Bianconi F, Aguilar F J, et al. Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo ima-gery[J]. Remote Sensing, 2014, 6(5):3554-3582.
[5] Aguilar M A, Jiménez-Lao R, Aguilar F J. Evaluation of object-based greenhouse mapping using WorldView-3 VNIR and SWIR data:A case study from Almería (Spain)[J]. Remote Sensing, 2021, 13(11):2133.
[6] Wu C F, Deng J S, Wang K, et al. Object-based classification approach for greenhouse mapping using Landsat8 imagery[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(1):79-88.
[7] Zhang P, Du P J, Guo S C, et al. A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images[J]. Remote Sensing of Environment, 2022, 276:113042.
[8] Lin J H, Jin X B, Ren J, et al. Rapid mapping of large-scale greenhouse based on integrated learning algorithm and Google Earth engine[J]. Remote Sensing, 2021, 13(7):1245.
[9] Nemmaoui A, Aguilar M A, Aguilar F J, et al. Greenhouse crop identification from multi-temporal multi-sensor satellite imagery using object-based approach:A case study from Almería (Spain)[J]. Remote Sensing, 2018, 10(11):1751.
[10] Novelli A, Aguilar M A, Nemmaoui A, et al. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat8 OLI data:A case study from Almería (Spain)[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 52(1):403-411.
[11] Baghirli O, Ibrahimli I, Mammadzada T. Greenhouse segmentation on high-resolution optical satellite imagery using deep learning techniques[J]. ArXiv, 2020: 2007.
[12] Zhao G X, Li J, Li T, et al. Utilizing landsat TM imagery to map greenhouses in Qingzhou,Shandong Province,China[J]. Pedosphere, 2004, 14(3):363-369
[13] Lu L Z, Di L P, Ye Y M, A decision-tree classifier for extracting transparent plastic-mulched landcover from Landsat5 TM images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11):4548-4558.
[14] Aguilar M A, Nemmaoui A, Novelli A, et al. Object-based greenhouse mapping using very high resolution satellite data and Landsat 8 time series[J]. Remote Sensing, 2016, 8(6):513.
[15] González-Yebra Ó, Aguilar M A, Nemmaoui A, et al. Methodological proposal to assess plastic greenhouses land cover change from the combination of archival aerial orthoimages and Landsat data[J]. Biosystems Engineering, 2018,175:36-51.
[16] Yang D D, Chen J, Zhou Y, et al. Mapping plastic greenhouse with medium spatial resolution satellite data:Development of a new spectral index[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128:47-60.
[17] Deng C B, Wu C S. BCI:A biophysical composition index for remote sensing of urban environments[J]. Remote Sensing of Environment, 2012, 127:247-259.
[18] 史忠奎, 李培军, 罗伦, 等. 基于形态学属性剖面和单类随机森林分类的道路路域新增建筑物提取方法[J]. 北京大学学报(自然科学版), 2018, 54(1):105-114.
Shi Z K, Li P J, Luo L, et al. A method for extraction of newly-built buildings in road region using morphological attribute profiles and one-class random forest[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(1):105-114.
[19] Désir C, Bernard S, Petitjean C, et al. One class random forests[J]. Pattern Recognition, 2013, 46(12):3490-3506.
[20] Oshiro T M, Perez P S, Baranauskas J A. How many trees in a random forest?[C]// Machine Learning and Data Mining in Pattern Recognition:8th International Conference. Berlin Heidelberg. Springer, 2012: 154-168.
[21] Bernard S, Heutte L, Adam S. Influence of hyperparameters on random forest accuracy[C]// Multiple Classifier Systems:8th International Workshop. Berlin Heidelberg. Springer, 2009: 171-180.
[22] Tian L, Wang Z, Xue B, et al. A disease-specific spectral index tracks Magnaporthe oryzae infection in paddy rice from ground to space[J]. Remote Sensing of Environment, 2023, 285:113384.
[23] Fisher R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936, 7(2):179-188.
[1] 黄飞, 王萧琼, 聂冠瑞, 颜军, 李先怡, 田家, 朱翠翠, 李前景, 田庆久. 热带亚热带植被覆盖区的光学遥感云检测提取方法[J]. 自然资源遥感, 2025, 37(4): 58-67.
[2] 黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
[3] 代云豪, 管瑶, 冯春涌, 蒋敏, 贺兴宏. 基于光谱指数建模的阿拉尔垦区土壤盐渍化信息提取与分析[J]. 自然资源遥感, 2023, 35(1): 205-212.
[4] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[5] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[6] 陈俊, 沈润平, 李博伦, 遆超普, 颜晓元, 周旻悦, 王绍武. 基于Logistic回归分析的塑料大棚遥感指数构建[J]. 国土资源遥感, 2019, 31(3): 43-50.
[7] 郑覃, 潘军, 蒋立军, 邢立新, 季悦, 于一凡, 王鹏举, 仲伟敬. 基于光谱指数的高温目标识别方法[J]. 国土资源遥感, 2019, 31(3): 51-58.
[8] 林婷, 刘湘南, 谭正. 基于ICA和高光谱指数的水稻Zn污染监测模型[J]. 国土资源遥感, 2011, 23(2): 59-64.
[9] 焦全军, 张霞, 张兵, 卫征, 郑兰芬. 基于叶片光谱的森林叶绿素浓度反演研究[J]. 国土资源遥感, 2006, 18(2): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发