Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (4): 58-67    DOI: 10.6046/zrzyyg.2024151
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
热带亚热带植被覆盖区的光学遥感云检测提取方法
黄飞1,2(), 王萧琼2, 聂冠瑞1, 颜军3, 李先怡3, 田家4, 朱翠翠2, 李前景2, 田庆久2()
1.自然资源部城市国土资源监测与仿真重点实验室,深圳 518034
2.南京大学国际地球系统科学研究所,南京 210023
3.珠海欧比特宇航科技股份有限公司,珠海 519000
4.北京航空航天大学仪器科学与光电工程学院,北京 100191
Optical remote sensing-based cloud detection and extraction method for tropical and subtropical vegetation areas
HUANG Fe1,2(), WANG Xiaoqiong2, NIE Guanrui1, YAN Jun3, LI Xianyi3, TIAN Jia4, ZHU Cuicui2, LI Qianjing2, TIAN Qingjiu2()
1. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China
2. International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
3. Zhuhai Orbita Aerospace Science & Technology Co., Ltd., Zhuhai 519000, China
4. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
全文: PDF(7152 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

热带亚热带植被覆盖地区的光学卫星遥感影像往往受到云影响,导致地物遥感信息缺失,如何有效地进行云检测、云物分类和云覆盖信息提取,仍然是遥感领域研究的热点和难点。国产卫星许多光学相机缺少目前主流云检测算法中的短波红外和热红外谱段,极大程度地降低了数据云去除的可用性。基于此,该文提出了一种仅利用可见光-近红外(400~1 000 nm)范围的几个谱段来实现云覆盖空间分布监测的算法。基于珠海一号卫星高光谱遥感影像,结合归一化水体指数(normalized difference water index,NDWI)和归一化植被指数(normalized difference vegetation index,NDVI)的光谱指数构建特征空间散点图,进行云/物分类和云检测,并提取混合像元中云、水和植被各组分覆盖信息。结果表明,相较于常规云检测的光谱指数阈值法,该文提出的基于NDWI-NDVI特征空间的云检测算法有更好的云/水分离能力,可以抑制阴影对云覆盖影响,精确描绘云覆盖空间分布特征,且简便易行,这为进一步发展国产光学卫星遥感数据云检测、云/水分离和云覆盖信息提取算法拓展了新的研究思路和技术途径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄飞
王萧琼
聂冠瑞
颜军
李先怡
田家
朱翠翠
李前景
田庆久
关键词 光谱指数高光谱遥感云检测特征空间热带亚热带珠海一号卫星    
Abstract

Optical satellite remote sensing images of tropical and subtropical vegetation areas are often affected by cloud cover, leading to missing remote sensing information of surface features. Effectively detecting clouds, classifying clouds and objects, and extracting cloud cover information remain hot topics and challenges in remote sensing research. Many optical cameras in domestic satellites lack the short-wave and thermal infrared spectral bands, which are used in prevailing cloud detection algorithms, reducing the image data availability after cloud removal. Hence, this study suggested detecting the spatial distribution of cloud cover by utilizing only several spectral bands in the visible light - near-infrared range (400 nm to 1 000 nm). Based on the hyperspectral remote sensing images from the Zhuhai-1 satellite, this study constructed feature space scatter plots using spectral indices, including normalized difference vegetation index (NDVI) and normalized differential water index (NDWI), for cloud/object classification and detection. Moreover, this study extracted the cloud, water, and vegetation cover information from mixed pixels. The results demonstrate that compared to conventional cloud detection methods using spectral index thresholds, the cloud detection algorithm under the NDWI-NDVI feature space used in this study exhibited a superior cloud-water separation capability and simple operability. It can precisely describe the spatial distribution characteristics of cloud cover by suppressing the shadow effect on cloud cover. Overall, this study offers a novel technical approach for further developing cloud detection, cloud-water separation, and cloud cover information extraction algorithms for domestic optical satellite remote sensing data.

Key wordsspectral index    hyperspectral remote sensing    cloud detection    feature space    tropic and subtropic    Zhuhai-1 satellite
收稿日期: 2024-04-19      出版日期: 2025-09-03
ZTFLH:  TP79  
基金资助:国家重点研发计划重点专项课题“星载波形LiDAR和多角度光学协同森林AGB估测技术”(2023YFF1303903);自然资源部城市国土资源监测与仿真重点实验室开放基金资助课题(KF-2022-07-018)
作者简介: 黄 飞(2000-),男,硕士研究生,主要从事高光谱和热红外遥感研究。Email: 502023270130@smail.nju.edu.cn
引用本文:   
黄飞, 王萧琼, 聂冠瑞, 颜军, 李先怡, 田家, 朱翠翠, 李前景, 田庆久. 热带亚热带植被覆盖区的光学遥感云检测提取方法[J]. 自然资源遥感, 2025, 37(4): 58-67.
HUANG Fe, WANG Xiaoqiong, NIE Guanrui, YAN Jun, LI Xianyi, TIAN Jia, ZHU Cuicui, LI Qianjing, TIAN Qingjiu. Optical remote sensing-based cloud detection and extraction method for tropical and subtropical vegetation areas. Remote Sensing for Natural Resources, 2025, 37(4): 58-67.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024151      或      https://www.gtzyyg.com/CN/Y2025/V37/I4/58
Fig.1  研究区位置示意图
Fig.2  研究区珠海一号卫星高光谱假彩色和真彩色影像
Fig.3  云/物反射光谱曲线
Fig.4  基于NDVINDWI直方图阈值及其分割图像
阈值特征分割 水体 厚云 薄云 裸土 植被
NDVI阈值 [-0.7, 0.08) [0.08, 0.3) [0.3, 0.6) [0.6, 0.7) [0.7, 1]
NDWI阈值 [-0.08, 0.1) [-0.17, -0.08) [-0.34, -0.17) [-0.43, -0.34) [-1, -0.43]
Tab.1  NDVINDWI光谱指数分割阈值特征点
Fig.5  NDWI-NDVI特征空间散点图
Fig.6  NDVI-NDWI特征空间阈值分类过程
Fig.7  基于单一光谱指数阈值的云物分类图
Fig.8  NDWI-NDVI散点分类结果
Fig.9  基于光谱指数三角特征空间的云物覆盖度分布图
Fig.10  云检测和云提取方法效果对比图
[1] 陈津乐, 张锦水, 段雅鸣, 等. 中分辨率遥感影像云检测与厚云去除研究综述[J]. 遥感技术与应用, 2023, 38(1):143-155.
Chen J L, Zhang J S, Duan Y M, et al. A review of cloud detection and thick cloud removal in medium resolution remote sensing images[J]. Remote Sensing Technology and Application, 2023, 38(1):143-155.
[2] Saunders R W. An automated scheme for the removal of cloud contamination from AVHRR radiances over western Europe[J]. International Journal of Remote Sensing, 1986, 7(7):867-886.
[3] 朱照荣, 张锡越, 曾艳艳, 等. TBC 4.0软件下的长基线数据处理精度分析[J]. 测绘通报, 2018(4):146-149.
Zhu Z R, Zhang X Y, Zeng Y Y, et al. Accuracy analysis of data processing for long baseline based on TBC 4.0 software[J]. Bulletin of Surveying and Mapping, 2018(4):146-149.
[4] 钟磊, 崔文刚, 敖德春, 等. 三种GPS基线处理软件的解算精度分析[J]. 测绘与空间地理信息, 2018, 41(2):90-93.
Zhong L, Cui W G, Ao D C, et al. Three kinds of GPS baselines processing software solution precision analysis[J]. Geomatics and Spatial Information Technology, 2018, 41(2):90-93.
[5] 胡玉祥, 王智, 张洪德, 等. TBC和LGO在GNSS数据处理中的对比和应用研究[J]. 城市勘测, 2018(2):115-118.
Hu Y X, Wang Z, Zhang H D, et al. Comparison and application research of TBC and LGO in GNSS data processing[J]. Urban Geotechnical Investigation & Surveying, 2018(2):115-118.
[6] 张明波. 高分辨率遥感图像云检测方法研究[D]. 大连: 大连海事大学, 2018.
Zhang M B. Research on cloud detection method of high resolution remote sensing image[D]. Dalian: Dalian Maritime University, 2018.
[7] 姬森展. 基于卷积神经网络的实时遥感图像云检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
Ji S Z. Research on cloud detection method of real-time remote sensing image based on convolutional neural network[D]. Harbin: Harbin Institute of Technology, 2021.
[8] 杨彬, 郭金源, 何鹏, 等. 面向HY-1C卫星CZI陆地遥感图像的云检测方法研究[J]. 遥感学报, 2023, 27(1):55-67.
Yang B, Guo J Y, He P, et al. Research on cloud detection for HY-1C CZI remote sensing images collected over lands[J]. National Remote Sensing Bulletin, 2023, 27(1):55-67.
[9] 胡昌苗, 张正, 唐娉. 国产卫星多光谱数据云与云影检测算法研究[J]. 遥感学报, 2023, 27(3):623-634.
Hu C M, Zhang Z, Tang P. Research on multispectral satellite image cloud and cloud shadow detection algorithm of domestic sate-llite[J]. National Remote Sensing Bulletin, 2023, 27(3):623-634.
[10] Li Z W, Shen H F, Li H F, et al. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery[J]. Remote Sensing of Environment, 2017(191):342-58.
[11] 冯书谊, 张宁, 沈霁, 等. 基于反射率特性的高光谱遥感图像云检测方法研究[J]. 中国光学, 2015, 8(2):198-204.
Feng S Y, Zhang N, Shen J, et al. Method of cloud detection with hyperspectral remote sensing image based on the reflective characteristics[J]. Chinese Optics, 2015, 8(2):198-204.
[12] 赵晓, 侯晴宇, 梁冰冰, 等. 基于多属性融合的高分辨率遥感图像云检测方法[J]. 光学技术, 2014, 40(2):145-150.
Zhao X, Hou Q Y, Liang B B, et al. A method for cloud detection in high-resolution remote sensing image based on multi-attribute fusion[J]. Optical Technique, 2014, 40(2):145-150.
[13] 徐冬宇, 厉小润, 赵辽英, 等. 基于光谱分析和动态分形维数的高光谱遥感图像云检测[J]. 激光与光电子学进展, 2019, 56(10):101003.
Xu D Y, Li X R, Zhao L Y, et al. Hyperspectral remote sensing image cloud detection based on spectral analysis and dynamic fractal dimension[J]. Laser and Optoelectronics Progress, 2019, 56(10):101003.
[14] Sun L, Yang X, Jia S, et al. Satellite data cloud detection using deep learning supported by hyperspectral data[J]. International Journal of Remote Sensing, 2020, 41(4):1349-1371.
[15] 隋淞蔓, 夹尚丰, 胡学谦. 统一样本云检测技术在GF-6 WFV上的改进与应用[J]. 遥感学报, 2022, 26(4):646-56.
Sui S M, Jia S F, Hu X Q. Improvement of unified sample cloud detection technology and its application in GF-6 WFV cloud detection[J]. National Remote Sensing Bulletin, 2022, 26(4):646-656.
[16] 吴金亮. 国产高分多光谱数据的自动云检测[J]. 计算机与网络, 2015, 41(14):45-47.
Wu J L. Cloud detection algorithm for domestic high-resolution multispectral image data[J]. Computer and Network, 2015, 41(14):45-47.
[17] 高贤君, 万幼川, 郑顺义, 等. 航空摄影过程中云的实时自动检测[J]. 光谱学与光谱分析, 2014, 34(7):1909.
Gao X J, Wan Y C, Zheng S Y, et al. Real-time automatic cloud detection during the process of taking aerial photographs[J]. Spectroscopy and Spectral Analysis, 2014, 34(7):1909.
[18] Irish R R, Barker J L, Goward S N, et al. Characterization of the Landsat7 ETM+ automated cloud-cover assessment (ACCA) algorithm[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(10):1179-1188.
[19] Zhu Z, Wang S, Woodcock C E. Improvement and expansion of the Fmask algorithm:Cloud,cloud shadow,and snow detection for Landsats4-7,8,and Sentinel 2 images[J]. Remote Sensing of Environment, 2015, 159:269-277.
[20] Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2):127-150.
[21] Usman M, Liedl R, Shahid M A, et al. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data[J]. Journal of Geographical Sciences, 2015, 25(12):1479-1506.
[22] Baeza S, Paruelo J M. Land use/land cover change (2000-2014) in the Rio de la plata grasslands:An analysis based on MODIS NDVI time series[J]. Remote Sensing, 2020, 12(3):381.
[23] Kodl G, Streeter R, Cutler N, et al. Arctic tundra shrubification can obscure increasing levels of soil erosion in NDVI assessments of land cover derived from satellite imagery[J]. Remote Sensing of Environment, 2024, 301:113935.
[24] Gao B C. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.
[25] Huang D Y, Wang C H. Optimal multi-level thresholding using a two-stage Otsu optimization approach[J]. Pattern Recognition Letters, 2009, 30(3):275-284.
[26] Rosin P L. Unimodal thresholding[J]. Pattern Recognition, 2001, 34(11):2083-2096.
[27] Xu X, Xu S, Jin L, et al. Characteristic analysis of Otsu threshold and its applications[J]. Pattern Recognition Letters, 2011, 32(7):956-961.
[28] Sobrino J A, Raissouni N, Li Z L. A comparative study of land surface emissivity retrieval from NOAA data[J]. Remote Sensing of Environment, 2001, 75(2):256-266.
[29] Tian J, Su S, Tian Q, et al. A novel spectral index for estimating fractional cover of non-photosynthetic vegetation using near-infrared bands of Sentinel satellite[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101:102361.
[30] Goodwin N, Coops N C, Stone C. Assessing plantation canopy condition from airborne imagery using spectral mixture analysis and fractional abundances[J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 7(1):11-28.
[31] Tian J, Zhang Z, Philpot W D, et al. Simultaneous estimation of fractional cover of photosynthetic and non-photosynthetic vegetation using visible-near infrared satellite imagery[J]. Remote Sensing of Environment, 2023, 290:113549.
[32] Garcı'a-Haro F J, Gilabert M A, Meliá J. Extraction of endmembers from spectral mixtures[J]. Remote Sensing of Environment, 1999, 68(3):237-253.
[1] 赵国凤, 方彦奇, 陈浩峰, 严维兵, 黄岩, 陈伟. 基于航空多参数遥感的滨海湿地植物固碳能力研究[J]. 自然资源遥感, 2025, 37(4): 88-98.
[2] 肖明珠, 李培军. 利用Sentinel-2光谱指数和改进的单类随机森林的塑料大棚提取方法[J]. 自然资源遥感, 2025, 37(4): 40-47.
[3] 叶武剑, 谢林峰, 刘怡俊, 温晓卓, 李扬. 基于MobileNet的轻量化云检测模型[J]. 自然资源遥感, 2025, 37(3): 95-103.
[4] 祁昌炜, 董基恩, 程旭, 叶高峰, 何书跃, 代威, 汪冰. ZY-1 02D高光谱数据在柴北缘荒漠区蚀变矿物填图及找矿中的应用[J]. 自然资源遥感, 2024, 36(4): 31-42.
[5] 易孜芳, 周磊磊, 骆检兰, 曹里. 高光谱反演耕地土壤质量评价元素含量方法研究[J]. 自然资源遥感, 2024, 36(3): 225-232.
[6] 宋奇, 高小红, 宋玉婷, 黎巧丽, 陈真, 李润祥, 张昊, 才桑洁. 基于无人机高光谱影像的农田土壤有机碳含量估算——以湟水流域农田为例[J]. 自然资源遥感, 2024, 36(2): 160-172.
[7] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[8] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[9] 黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
[10] 代云豪, 管瑶, 冯春涌, 蒋敏, 贺兴宏. 基于光谱指数建模的阿拉尔垦区土壤盐渍化信息提取与分析[J]. 自然资源遥感, 2023, 35(1): 205-212.
[11] 孔卓, 杨海涛, 郑逢杰, 李扬, 齐济, 朱沁雨, 杨忠霖. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 2022, 34(4): 1-10.
[12] 张思源, 岳楚, 袁国礼, 袁帅, 庞文强, 李俊. 基于ENDVI-SI3特征空间的盐渍化反演模型及风险评估[J]. 自然资源遥感, 2022, 34(4): 136-143.
[13] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[14] 鄢俊洁, 郭雪星, 瞿建华, 韩旻. 基于朴素贝叶斯方法的FY-4A/AGRI云检测模型[J]. 自然资源遥感, 2022, 34(3): 33-42.
[15] 刘广进, 王光辉, 毕卫华, 刘慧杰, 杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法[J]. 自然资源遥感, 2022, 34(2): 88-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发