Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (5): 62-72    DOI: 10.6046/zrzyyg.2024286
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种融合上下文语义信息与边缘特征的海陆分割方法
文甜甜1(), 普运伟1,2(), 赵文翔1
1.昆明理工大学国土资源工程学院,昆明 650093
2.昆明理工大学信息工程与自动化学院,昆明 650500
A sea-land segmentation method combining contextual semantic information and edge features
WEN Tiantian1(), PU Yunwei1,2(), ZHAO Wenxiang1
1. Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650093,China
2. Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China
全文: PDF(5550 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

由于在环境错综复杂、地物信息丰富的光学遥感图像中进行海陆分割时会出现定位精度低和边缘模糊的问题,因此文章提出一种融合上下文语义信息与边缘特征的深度卷积网络模型与海陆分割方法。首先利用FusionNet语义分割网络模块提取遥感图像中丰富的目标语义信息;然后利用改进的空洞空间金字塔池化模块(atrous spatial pyramid pooling,ASPP)和上下文注意力模块从分割网络中提取不同尺度和层次的上下文语义特征,并构建边缘提取子网络获取多尺度边缘特征;最后通过融合模块对语义特征和边缘特征进行组合,实现海陆精准分割。在2个典型数据集上的测试结果表明,该文方法的整体预测正确率、F1分数以及边界F1分数分别达到了98.21%,97.64%,89.36%和96.09%,95.67%,86.13%,均显著优于其他对比模型。特别是在复杂背景下,该方法可有效提高分割和边缘检测的准确性,对人工岸线和港口的分割具有明显优势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
文甜甜
普运伟
赵文翔
关键词 海陆分割边缘提取语义分割多任务学习上下文注意力模块    
Abstract

In optical remote sensing images with complex scenes and rich land cover information,the sea-land segmentation faces challenges such as low positioning accuracy and blurred edges. Therefore,this paper proposed a deep convolutional network model and a sea-land segmentation method that integrate contextual semantic information and edge features. First,the rich target semantic information was extracted from remote sensing images using the FusionNet semantic segmentation network module. Then,multi-scale and hierarchical contextual semantic features were extracted from the segmentation network using the enhanced atrous spatial pyramid pooling (ASPP) module and contextual attention module. Additionally,an edge extraction sub-network was built to extract multi-scale edge features. Finally,the semantic features and edge features were combined through a fusion module,thereby achieving accurate sea-land segmentation. This method was tested with two typical representative datasets. The results showed that this method achieved an overall prediction accuracy of 98.21%,an F1 score of 97.64%,and a boundary F1 score of 89.36%,all significantly outperforming other models. Particularly in complex backgrounds,this method can effectively improve the accuracy of segmentation and edge detection,demonstrating definite advantages in the segmentation of artificial coastlines and ports.

Key wordssea-land segmentation    edge extraction    semantic segmentation    multi-task learning    contextual attention module
收稿日期: 2024-09-02      出版日期: 2025-10-28
ZTFLH:  TP79  
通讯作者: 普运伟(1973-),男,教授,博士生导师,研究方向为智能信息处理、智能信号处理、地理信息挖掘与处理。Email:puyunwei@126.com
作者简介: 文甜甜(1997-),女,硕士研究生,研究方向为遥感影像处理。Email:1638581978@qq.com
引用本文:   
文甜甜, 普运伟, 赵文翔. 一种融合上下文语义信息与边缘特征的海陆分割方法[J]. 自然资源遥感, 2025, 37(5): 62-72.
WEN Tiantian, PU Yunwei, ZHAO Wenxiang. A sea-land segmentation method combining contextual semantic information and edge features. Remote Sensing for Natural Resources, 2025, 37(5): 62-72.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024286      或      https://www.gtzyyg.com/CN/Y2025/V37/I5/62
Fig.1  ES-Net model结构
Fig.2  语义分割模块
Fig.3  ASPP模块
Fig.4  CBAM模块
Fig.5  改进的空间注意力机制
特征
映射
名称 卷积核
尺寸
步幅 填充 输出尺寸
特征1 Conv1-2 3×3 2 1 256×256×64
Conv1-E 1×1 1 0 256×256×32
Unpool1-E 2×2 2 0 512×512×32
特征2 Conv3-2 3×3 2 1 64×64×256
Conv2-E 1×1 1 0 64×64×32
Unpool2-1-E 2×2 4 0 256×256×32
Unpool2-2-E 2×2 2 0 512×512×32
特征3 Conv4-2 3×3 1 1 32×32×512
Conv3-E 1×1 1 0 32×32×32
Unpool3-1-E 2×2 4 0 128×128×32
Unpool3-2-E 2×2 4 0 512×512×32
特征4 Conv3-2-D 3×3 1 1 128×128×256
Conv4-E 1×1 1 0 128×128×32
Unpool4-1-E 2×2 2 0 256×256×32
Unpool4-2-E 2×2 2 0 512×512×32
特征5 Conv1-2-D 3×3 1 1 512×512×64
Conv5-E 1×1 1 0 512×512×32
拼接层 Concat 512×512×160
卷积层 Conv-E 3×3 1 1 512×512×2
预测层 Softmax 512×512×2
Tab.1  边缘提取网络详细配置
Fig.6  边缘提取模块
Fig.7  Coastline-Segmentation数据集样本图像
Fig.8  HRSC2016数据集样本图像
输入图
像编号
输入图像 标签 U-Net PSPNet FusionNet 本文方法 边缘提取结果
图像1
图像2
图像3
图像4
Tab.2  不同方法在Coastline-Segmentation数据集上的分割结果
输入图
像编号
输入图像 标签 U-Net PSPNet FusionNet 本文方法 边缘提取结果
图像1
图像2
图像3
图像4
Tab.3  不同方法在HRSC2016数据集上的分割结果
数据集 方法 交并比 召回率 正确率 F1分数 BR BP BF1
Coastline-Segmentation数据集 U-Net+Canny 92.39 96.63 97.08 96.85 79.87 82.25 81.03
PSPNet+Canny 92.62 95.67 96.82 96.24 78.94 81.23 80.07
FusionNet+Canny 93.22 96.86 97.71 97.28 83.21 85.56 83.20
本文方法 93.14 97.09 98.21 97.64 87.10 91.75 89.36
HRSC2016数据集 U-Net+Canny 90.86 93.36 93.06 93.04 76.92 83.33 79.98
PSPNet+Canny 89.31 91.11 92.55 92.41 79.23 80.56 79.88
FusionNet+Canny 90.26 92.95 94.68 93.28 81.02 82.54 81.77
本文方法 93.14 95.26 96.09 95.67 84.96 87.32 86.13
Tab.4  对不同网络的分割效果进行比较研究的结果
Fig.9  消融实验结果对比
[1] Liu G, Zhang Y S, Zheng X W, et al. A new method on inshore ship detection in high-resolution satellite images using shape and context information[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3):617-621.
[2] Zhu C R, Zhou H, Wang R S, et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9):3446-3456.
[3] Ji X, Tang L B, Lu T W, et al. DBENet:Dual-branch ensemble network for sea-land segmentation of remote-sensing images[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72:5503611.
[4] 陈祥, 孙俊, 尹奎英, 等. 基于Otsu与海域统计特性的SAR图像海陆分割算法[J]. 数据采集与处理, 2014, 29(4):603-608.
Chen X, Sun J, Yin K Y, et al. Sea-land segmentation algorithm of SAR image based on Otsu method and statistical characteristic of sea area[J]. Journal of Data Acquisition and Processing, 2014, 29(4):603-608.
[5] 李业钦, 王常颖, 隋毅, 等. 基于自动阈值分类的高分辨率影像海陆分界线自动提取[J]. 遥感技术与应用, 2021, 36(6):1379-1387.
doi: 10.11873/j.issn.1004-0323.2021.6.1379
Li Y Q, Wang C Y, Sui Y, et al. Automatic extraction of the sea-land boundary from high spatial resolution images based on automatic threshold segmentation[J]. Remote Sensing Technology and Application, 2021, 36(6):1379-1387.
[6] 梁新宇, 罗晨, 权冀川, 等. 基于深度学习的图像语义分割技术研究进展[J]. 计算机工程与应用, 2020, 56(2):18-28.
doi: 10.3778/j.issn.1002-8331.1910-0300
Liang X Y, Luo C, Quan J C, et al. Research on progress of image semantic segmentation based on deep learning[J]. Computer Engineering and Applications, 2020, 56(2):18-28.
doi: 10.3778/j.issn.1002-8331.1910-0300
[7] 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7):1526-1548.
doi: 10.3778/j.issn.1673-9418.2211015
Ma Y, Gulimila·K. Research review of image semantic segmentation method in high-resolution remote sensing image interpretation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7):1526-1548.
[8] Lei S, Zou Z X, Liu D G, et al. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features[J]. Infrared Physics & Technology, 2018, 91:12-17.
[9] Elkhateeb E, Soliman H, Atwan A, et al. A novel coarse-to-fine sea-land segmentation technique based on superpixel fuzzy C-means clustering and modified Chan-Vese model[J]. IEEE Access, 2021, 9:53902-53919.
[10] Kalchbrenner N, Grefenstette E, Blunsom P. A convolutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics,2014:655-665.
[11] Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015.Springer International Publishing,2015:234-241.
[12] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[13] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:6230-6239.
[14] Wu X Y, Chen G, Ding X Q, et al. Multiscale deep fully convolutional network for sea-land segmentation of surveillance images[C]//2020 International Conference on Image,Video Processing and Artificial Intelligence. SPIE, 2020:29-35.
[15] Ji X, Tang L B, Liu T H, et al. HeteroNet:A heterogeneous encoder-decoder network for sea-land segmentation of remote sensing im-ages[J]. Journal of Electronic Imaging, 2023, 32(5):053016.
[16] Zhao L, Zhang Y S, Xue W, et al. Fast and accurate sea-land segmentation of SAR imagery based on multi-source data registration[J]. Geocarto International, 2022, 37(26):13748-13768.
[17] Gao P, Tian J W. A novel model for edge aware sea-land segmentation[C]//MIPPR 2019: Remote Sensing Image Processing,Geographic Information Systems,and Other Applications. SPIE,2020:107-114.
[18] 梁烽, 张瑞祥, 柴英特, 等. 一种结合上下文与边缘注意力的SAR图像海陆分割深度网络方法[J]. 武汉大学学报(信息科学版), 2023, 48(8):1286-1295.
Liang F, Zhang R X, Chai Y T, et al. A sea-land segmentation method for SAR images using context-aware and edge attention based CNNs[J]. Geomatics and Information Science of Wuhan University, 2023, 48(8):1286-1295.
[19] Chen L, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. arXiv, 2017(2017-06-17). http://arxiv.org/abs/1706.05587.
[20] Quan T M, Hildebrand D G C, Jeong W K. FusionNet:A deep fully residual convolutional neural network for image segmentation in connectomics[J]. Frontiers in Computer Science, 2021, 3:613981.
[21] He K M, Zhang X Y, Ren S Q, et al. Deep re-sidual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016:770-778.
[22] Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[C]// Computer Vision-ECCV 2018.Springer International Publishing,2018:3-19.
[23] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//31st Annual Conference on Neural Information Processing Systems (NIPS).ACM,2017:6000-6010.
[24] 杨先增, 周亚男, 张新, 等. 融合边缘特征与语义信息的人工坑塘精准提取方法[J]. 地球信息科学学报, 2022, 24(4):766-779.
doi: 10.12082/dqxxkx.2022.210489
Yang X Z, Zhou Y N, Zhang X, et al. Accurate extraction of artificial pit-pond integrating edge features and semantic information[J]. Journal of Geo-Information Science, 2022, 24(4):766-779.
[25] Zhang Y, Liu F G, Tang Q. Utilize spatial prior in ground truth:Spatial-enhanced loss for semantic segmentation[C]// Artificial Neural Networks and Machine Learning-ICANN 2022.Springer Nature Switzerland,2022:312-321.
[26] Li X Y, Sun X F, Meng Y X, et al. Dice loss for data-imbalanced NLP tasks[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics,2020:465-476.
[27] Salehi S S M, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3D fully convolutional deep networks[C]// Machine Learning in Medical Imaging. Springer International Publishing,2017:379-387.
[28] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327.
[29] Kervadec H, Bouchtiba J, Desrosiers C, et al. Boundary loss for highly unbalanced segmentation[J]. Medical Image Analysis, 2021, 67:101851.
[30] Yang T, Jiang S L, Hong Z H, et al. Sea-land segmentation using deep learning techniques for Landsat8 OLI imagery[J]. Marine Geodesy, 2020, 43(2):105-133.
[31] Liu Z K, Yuan L, Weng L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]// Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. SciTePress,2017:324-331.
[1] 何晓军, 罗杰. 结合上下文与类别感知特征融合的高分遥感图像语义分割[J]. 自然资源遥感, 2025, 37(2): 1-10.
[2] 郑宗生, 高萌, 周文睆, 王政翰, 霍志俊, 张月维. 基于样本迭代优化策略的密集连接多尺度土地覆盖语义分割[J]. 自然资源遥感, 2025, 37(2): 11-18.
[3] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[4] 陈佳雪, 肖东升, 陈虹宇. 一种边界引导与跨尺度信息交互网络用于遥感影像水体提取[J]. 自然资源遥感, 2025, 37(1): 15-23.
[5] 刘晨晨, 葛小三, 武永斌, 余海坤, 张蓓蓓. 基于混合注意力机制和Deeplabv3+的遥感影像建筑物提取方法[J]. 自然资源遥感, 2025, 37(1): 31-37.
[6] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[7] 潘俊杰, 慎利, 鄢薪, 聂欣, 董宽林. 一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法[J]. 自然资源遥感, 2024, 36(4): 149-157.
[8] 李世琦, 姚国清. 基于CNN与SETR的特征融合滑坡体检测[J]. 自然资源遥感, 2024, 36(4): 158-164.
[9] 苏腾飞. 深度卷积语义分割网络在农田遥感影像分类中的对比研究——以河套灌区为例[J]. 自然资源遥感, 2024, 36(4): 210-217.
[10] 罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
[11] 白石, 唐攀攀, 苗朝, 金彩凤, 赵博, 万昊明. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3): 96-107.
[12] 马惠, 刘波, 杜世宏. 多任务学习孪生网络的遥感影像多类变化检测[J]. 自然资源遥感, 2024, 36(1): 77-85.
[13] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[14] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[15] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发