Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (5): 53-61    DOI: 10.6046/zrzyyg.2024198
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种考虑地物含水量和长时序遥感影像的海岸线精准定位方法
龚绍军1(), 陈超2(), 范竞3
1.浙江海洋大学海洋科学与技术学院,舟山 316002
2.苏州科技大学地理科学与测绘工程学院,苏州 215009
3.枣庄市网络安全保障中心,枣庄 277899
A precise coastline extraction method using surface moisture content and long-time-series remote sensing imagery
GONG Shaojun1(), CHEN Chao2(), FAN Jing3
1. College of Marine Science and Technology,Zhejiang Ocean University,Zhoushan 316022,China
2. School of Geography Science and Geomatics Engineering,Suzhou University of Science and Technology,Suzhou 215009,China
3. Zaozhuang Network Security Guarantee Center,Zaozhuang 277899,China
全文: PDF(4708 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

海岸线是最重要的基础地理要素之一。受到瞬时性遥感成像和动态性潮汐现象的影响,传统方法往往难以准确探测海岸线的空间位置。该研究基于长时序卫星遥感影像,发展了一种考虑地物含水量的海岸线精准定位模型。首先,获取研究时相内覆盖研究区的遥感影像,构建高质量遥感影像堆栈;其次,基于缨帽变换(tasselled cap transformation,TCT)获取表征地物含水量的湿度分量,构建湿度指数堆栈;然后,利用最大光谱指数合成(maximum spectral index composite,MSIC)算法对湿度分量进行最大值合成,获取最大水面合成影像;最后,在OTSU算法的支持下对最大水面合成影像进行分割,获取位置准确的海岸线遥感信息。研究基于谷歌地球引擎(Google Earth Engine,GEE)云平台和Landsat8 OLI遥感影像,选择舟山本岛开展验证实验,结果表明,该模型能准确定位不同类型海岸线,位置精度较高,与目视解译结果相比,距离平均值和均方根误差分别为3.42 m和6.79 m,99.42%的验证点小于1像元宽度。本研究能够为海岸线遥感信息高精度提取提供技术支撑,对于海岸带资源科学管理和可持续发展具有重要意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚绍军
陈超
范竞
关键词 海岸线湿度分量缨帽变换长时序遥感影像精准定位    
Abstract

Coastlines serve as one of the most essential basic geographic elements. However,conventional methods generally face challenges in the accurate detection of their location,due to instantaneous remote sensing imaging and dynamic tidal phenomena. In response to this,this study developed a novel coastline extraction model that incorporates information on surface moisture content derived from long-time-series satellite remote sensing imagery. First,all available remote sensing images covering the study area during the target period were acquired to construct a high-quality remote sensing image stack. Second,the wetness components indicative of the surface moisture content were obtained using the tasseled cap transformation (TCT),from which a wetness index stack was constructed. Then,the wetness components were subjected to maximum value synthesis using the maximum spectral index composite (MSIC) algorithm,generating a maximum water surface composite image. Finally,the composite image was segmented using the OTSU algorithm to extract accurate coastline information. Validation experiments were conducted on Zhoushan Island using the Google Earth Engine (GEE) cloud computing platform and remote sensing imagery from the operational land imager (OLI) onboard the Landsat 8 satellite. The results indicate that the proposed model can precisely locate different types of coastlines with high spatial accuracy. Compared to visual interpretation,the model exhibited a mean deviation and a root mean square error (RMSE) of 3.42 m and 6.79 m,respectively,with 99.42% of validation points falling within one pixel width. This study provides an effective technical framework for high-accuracy coastline extraction,holding great significance for scientific management and sustainable development of coastal resources.

Key wordscoastline    wetness component    tasseled cap transformation (TCT)    long-time-series remote sensing imagery    precise localization
收稿日期: 2024-06-12      出版日期: 2025-10-28
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“人类活动影响下的群岛区域海岸线时空演变机制分析”(42171311)
通讯作者: 陈 超(1982-),男,博士,教授,研究方向为海岸带生态与环境遥感。Email:chenchao@usts.edu.cn
作者简介: 龚绍军(1998-),男,硕士研究生,研究方向为海岸带环境遥感。Email:gongshaojun@zjou.edu.cn
引用本文:   
龚绍军, 陈超, 范竞. 一种考虑地物含水量和长时序遥感影像的海岸线精准定位方法[J]. 自然资源遥感, 2025, 37(5): 53-61.
GONG Shaojun, CHEN Chao, FAN Jing. A precise coastline extraction method using surface moisture content and long-time-series remote sensing imagery. Remote Sensing for Natural Resources, 2025, 37(5): 53-61.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024198      或      https://www.gtzyyg.com/CN/Y2025/V37/I5/53
Fig.1  研究区遥感图像
Fig.2  研究路线图
序号 成像日期 云量/% 潮汐信息(北京时间) 序号 成像日期 云量/% 潮汐信息(北京时间)
验潮站 高潮时刻 低潮时刻 验潮站 高潮时刻 低潮时刻
1 2022-01-03 117 39 1.05 沈家门 09:56 03:26 9 2022-03-24 117 40 13.50 岱山 13:54 08:54
2 2022-01-03 117 40 3.25 沈家门 09:56 03:26 10 2022-04-09 117 40 8.55 岱山 15:04 10:17
3 2022-01-19 117 40 0.35 沈家门 10:40 04:20 11 2022-05-02 118 39 11.24 岱山 11:12 05:46
4 2022-02-27 118 39 0.08 沈家门 07:03 14:43 12 2022-08-22 118 39 9.55 岱山 06:28 12:32
5 2022-03-08 117 39 0.05 沈家门 06:40 12:17 13 2022-10-02 117 39 2.63 岱山 14:52 08:16
6 2022-03-08 117 40 0.07 沈家门 06:40 12:17 14 2022-10-02 117 40 3.88 岱山 14:52 08:16
7 2022-03-15 118 39 0.15 沈家门 08:11 14:50 15 2022-11-10 118 39 11.81 岱山 11:30 05:21
8 2022-03-24 117 39 0.03 沈家门 12:42 07:24 16 2022-11-26 118 39 6.21 岱山 12:08 05:44
Tab.1  所用遥感影像及潮汐信息表
缨帽变换后分量 波段
蓝光 绿光 红光 近红外 短波红外1 短波红外2
亮度指数 -0.236 3 -0.283 6 -0.425 7 0.809 7 0.004 3 -0.164 0
绿度指数 0.130 1 0.229 0 0.349 2 0.179 5 -0.627 0 -0.620 0
湿度指数 -0.823 9 0.084 9 0.439 6 -0.058 0 0.201 3 -0.277 0
TCT4 -0.329 4 0.055 7 0.105 6 0.185 5 -0.434 9 0.808 5
TCT5 0.107 9 -0.902 3 0.411 9 0.057 5 -0.025 9 0.025 2
TCT6 0.344 3 0.405 7 0.466 7 0.534 7 0.393 0 0.241 2
Tab.2  Landsat8卫星反射率的缨帽变换系数
Fig.3  海岸线提取结果
Fig.4  不同方法提取结果
Fig.5  不同类型海岸线提取效果对比
方法 面积/km2 长度/km 面积误差/% 长度误差/%
目视解译 514.43 146.84
本文方法 513.68 150.51 -0.14 2.50
NDWI法 516.19 152.40 0.34 3.79
MNDWI法 516.18 152.76 0.34 4.04
Tab.3  海岸线长度及所围面积比较
Fig.6  不同距离点数分布图
方法 选取点数/个 距离平均值/m RMSE/m
本文方法 1 200 3.42 6.79
NDWI法 1 200 18.40 30.50
MNDWI法 1 200 18.03 30.12
Tab.4  距离平均值和RMSE
[1] Boak E H, Turner I L. Shoreline definition and detection:A review[J]. Journal of Coastal Research, 2005, 214:688-703.
[2] Kuleli T, Guneroglu A, Karsli F, et al. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey[J]. Ocean Engineering, 2011, 38(10):1141-1149.
[3] 侯西勇, 刘静, 宋洋, 等. 中国大陆海岸线开发利用的生态环境影响与政策建议[J]. 中国科学院院刊, 2016, 31(10):1143-1150.
Hou X Y, Liu J, Song Y, et al. Environmental-ecological effect of development and utilization of China’s coastline and policy recommendations[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10):1143-1150.
[4] Sun W, Chen C, Liu W, et al. Coastline extraction using remote sensing:A review[J]. GIScience & Remote Sensing, 2023, 60(1):2243671.
[5] 刘宝银, 苏奋振. 中国海岸带与海岛遥感调查:原则方法系统[M]. 北京: 海洋出版社, 2005.
Liu B Y, Su F Z. Remote sensing survey of coastal zones and islands in China:Principles and methods system[M]. Beijing: Ocean Press, 2005.
[6] 朱琳, 黄玉玲, 杨刚, 等. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2):50-60.doi:10.6046/zrzyyg.2022214.
Zhu L, Huang Y L, Yang G, et al. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology[J]. Remote Sensing for Natural Resources, 2023, 35(2):50-60.doi:10.6046/zrzyyg.2022214.
[7] Aiello A, Canora F, Pasquariello G, et al. Shoreline variations and coastal dynamics:A space-time data analysis of the jonian littoral,Italy[J]. Estuarine,Coastal and Shelf Science, 2013, 129:124-135.
[8] Dar I A, Dar M A. Prediction of shoreline recession using geospatial technology:A case study of Chennai coast,Tamil Nadu,India[J]. Journal of Coastal Research, 2009, 256:1276-1286.
[9] Romine B M, Fletcher C H. A summary of historical shoreline changes on beaches of Kauai,Oahu,and Maui,Hawaii[J]. Journal of Coastal Research, 2013, 288:605-614.
[10] Krien Y, Dudon B, Roger J, et al. Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique[J]. Natural Hazards and Earth System Sciences, 2017, 17(9):1559-1571.
[11] Sun C, Li J, Liu Y, et al. Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series[J]. Remote Sensing of Environment, 2021, 256:112320.
[12] Hou X, Wu T, Hou W, et al. Characteristics of coastline changes in mainland China since the early 1940s[J]. Science China Earth Sciences, 2016, 59(9):1791-1802.
[13] 吴一全, 刘忠林. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23(4):582-602.
Wu Y Q, Liu Z L. Research progress on methods of automatic coastline extraction based on remote sensing images[J]. Journal of Remote Sensing, 2019, 23(4):582-602.
[14] 傅姣琪, 陈超, 郭碧云. 缨帽变换的遥感图像水边线信息提取方法[J]. 测绘科学, 2019, 44(5):177-183.
Fu J Q, Chen C, Guo B Y. A method of extracting shoreline information from remote sensing image based on tasseled cap transformation[J]. Science of Surveying and Mapping, 2019, 44(5):177-183.
[15] 李清泉, 卢艺, 胡水波, 等. 海岸带地理环境遥感监测综述[J]. 遥感学报, 2016, 20(5):1216-1229.
Li Q Q, Lu Y, Hu S B, et al. Review of remotely sensed geo-environmental monitoring of coastal zones[J]. Journal of Remote Sensing, 2016, 20(5):1216-1229.
[16] Sagar S, Roberts D, Bala B, et al. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations[J]. Remote Sensing of Environment, 2017, 195:153-169.
[17] Chen C, Fu J, Zhang S, et al. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images[J]. Estuarine,Coastal and Shelf Science, 2019, 217:281-291.
[18] Bishop-Taylor R, Nanson R, Sagar S, et al. Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery[J]. Remote Sensing of Environment, 2021, 267:112734.
[19] Xu N, Gong P. Significant coastline changes in China during 1991—2015 tracked by Landsat data[J]. Science Bulletin, 2018, 63(14):883-886.
[20] Cao W, Zhou Y, Li R, et al. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images[J]. Remote Sensing of Environment, 2020, 239:111665.
[21] Liu C, Xiao Y, Yang J. A coastline detection method in polarimetric SAR images mixing the region-based and edge-based active contour models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3735-3747.
[22] Li J, Ye M, Pu R, et al. Spatiotemporal change patterns of coastlines in Zhejiang Province,China,over the last twenty-five years[J]. Sustainability, 2018, 10(2):477.
[23] 陈云浩, 冯通, 史培军, 等. 基于面向对象和规则的遥感影像分类研究[J]. 武汉大学学报(信息科学版), 2006, 31(4):316-320.
Chen Y H, Feng T, Shi P J, et al. Classification of remot sensing image based on object oriented and class rules[J]. Geomatics and Information Science of Wuhan University, 2006, 31(4):316-320.
[24] 詹雅婷, 朱利, 孙永华, 等. 海岸线遥感光谱角度—距离相似度生长模型自动化提取[J]. 遥感学报, 2017, 21(3):458-469.
Zhan Y T, Zhu L, Sun Y H, et al. Automatic extraction of coastline via spectral angle-distance similarity growth model[J]. Journal of Remote Sensing, 2017, 21(3):458-469.
[25] Dang K B, Dang V B, Ngo V L, et al. Application of deep learning models to detect coastlines and shorelines[J]. Journal of Environmental Management, 2022, 320:115732.
[26] Sun S, Mu L, Feng R, et al. Quadtree decomposition-based Deep learning method for multiscale coastline extraction with high-resolution remote sensing imagery[J]. Science of Remote Sensing, 2024, 9:100112.
[27] Wei Z, Jiao X, Du Y, et al. The temporal variations in principal and shallow-water tidal constituents and their application in tidal level calculation:An example in Zhoushan archipelagoes with complex bathymetry[J]. Ocean and Coastal Management, 2023, 237:106516.
[28] Chen C, Liang J, Xie F, et al. Temporal and spatial variation of coastline using remote sensing images for Zhoushan Archipelago,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107:102711.
[29] Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine:Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202:18-27.
[30] Mao Y, Harris D L, Xie Z, et al. Efficient measurement of large-scale decadal shoreline change with increased accuracy in tide-dominated coastal environments with Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181:385-399.
[31] Mateo-García G, Gómez-Chova L, Amorós-López J, et al. Multitemporal cloud masking in the Google Earth Engine[J]. Remote Sensing, 2018, 10(7):1079.
[32] Liu Y, Liu Y, Li J, et al. Trajectory of coastal wetland vegetation in Xiangshan Bay,China,from image time series[J]. Marine Pollution Bulletin, 2020, 160:111697.
[33] Guo R, Zhu X, Zhang C, et al. Analysis of change in maize plantation distribution and its driving factors in Heilongjiang Province,China[J]. Remote Sensing, 2022, 14(15):3590.
[34] Kauth R J, Thomas G S. The tasselled cap: A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat[C]// LARS symposia.1976:159.
[35] Pelletier N, Millard K, Darling S. Wildfire likelihood in Canadian treed peatlands based on remote-sensing time-series of surface conditions[J]. Remote Sensing of Environment, 2023, 296:113747.
[36] Crist E P. A TM Tasseled cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985, 17(3):301-306.
[37] 闫柏琨, 甘甫平, 印萍, 等. 1989—2021年中国大陆海岸带潮滩、海岸线、养殖水体遥感观测[J]. 自然资源遥感, 2023, 35(3):53-63.doi:10.6046/zrzyyg.2022471.
Yan B K, Gan F P, Yin P, et al. Remote sensing observations of tidal flats,shorelines,and aquacultural water bodies along coastal zones in China mainland during 1989—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3):53-63.doi:10.6046/zrzyyg.2022471.
[38] Ali Baig M H, Zhang L, Shuai T, et al. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance[J]. Remote Sensing Letters, 2014, 5(5):423-431.
[39] Jia M, Wang Z, Mao D, et al. Rapid,robust,and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2021, 255:112285.
[40] 程丽娜, 钟才荣, 李晓燕, 等. Sentinel-2密集时间序列数据和Google Earth Engine的潮间带湿地快速自动分类[J]. 遥感学报, 2022, 26(2):348-357.
Cheng L N, Zhong C R, Li X Y, et al. Rapid and automatic classification of intertidal wetlands based on intensive time series Sentinel-2 images and Google Earth Engine[J]. National Remote Sensing Bulletin, 2022, 26(2):348-357.
[1] 张昊杰, 杨立娟, 施婷婷, 王帅. GF-6 WFV传感器数据的缨帽变换系数推导[J]. 自然资源遥感, 2024, 36(2): 105-115.
[2] 刘源, 李婷. 城市化进程下厦门市海岸线形态时空变化分析[J]. 自然资源遥感, 2024, 36(1): 267-274.
[3] 闫柏琨, 甘甫平, 印萍, 葛晓立, 郭艺, 白娟. 1989—2021年中国大陆海岸带潮滩、海岸线、养殖水体遥感观测[J]. 自然资源遥感, 2023, 35(3): 53-63.
[4] 朱琳, 黄玉玲, 杨刚, 孙伟伟, 陈超, 黄可. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2): 50-60.
[5] 陈超, 陈慧欣, 陈东, 张自力, 张旭锋, 庄悦, 褚衍丽, 陈建裕, 郑红. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2): 141-152.
[6] 罗昆, 丁波, 龙根元. 基于多源遥感影像的宁远河口海岸线变迁分析[J]. 国土资源遥感, 2018, 30(4): 187-192.
[7] 蒙永辉, 王集宁, 张丽霞, 罗梅. 1979—2012年莱州湾南岸海水入侵与区域海岸线变动时空耦合分析[J]. 国土资源遥感, 2018, 30(3): 189-195.
[8] 赵玉灵. 广东省海岸线与红树林现状遥感调查与保护建议[J]. 国土资源遥感, 2017, 29(s1): 114-120.
[9] 王集宁, 蒙永辉, 张丽霞. 近42年黄河口海岸线遥感监测与变迁分析[J]. 国土资源遥感, 2016, 28(3): 188-193.
[10] 杨文治, 张友静, 尹新沆, 王金龙. 面向GF-1影像的比值建筑用地指数构建[J]. 国土资源遥感, 2016, 28(1): 35-42.
[11] 杨长坤, 刘召芹, 王崇倡, 刘斌, 彭嫚. 2001—2013年辽东湾海岸带空间变化分析[J]. 国土资源遥感, 2015, 27(4): 150-157.
[12] 刘鹏程. 基于水平集理论的海岸线轮廓特征提取[J]. 国土资源遥感, 2015, 27(2): 75-79.
[13] 张旭凯, 张霞, 杨邦会, 庄智, 尚坤. 结合海岸类型和潮位校正的海岸线遥感提取[J]. 国土资源遥感, 2013, 25(4): 91-97.
[14] 朱俊凤, 王耿明, 张金兰, 黄铁兰. 珠江三角洲海岸线遥感调查和近期演变分析[J]. 国土资源遥感, 2013, 25(3): 130-137.
[15] 张钰, 王让会. 基于CA模型的防城港海岸线预测模拟[J]. 国土资源遥感, 2013, 25(2): 149-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发