Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (2): 212-219    DOI: 10.6046/zrzyyg.2021413
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
时序InSAR解析消落带区域岸坡地表形变及其水要素影响
潘建平(), 付占宝(), 邓福江, 蔡卓言, 赵瑞淇, 崔伟
重庆交通大学智慧城市学院,重庆 400074
A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements
PAN Jianping(), FU Zhanbao(), DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei
School of Smart City, Chongqing Jiaotong University, Chongqing 400074, China
全文: PDF(5960 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

消落带区域多发生地质灾害,因此理清库水位、降雨等因素在消落带区域地表形变中的作用对于地质灾害预警及防治具有重要意义。为此,采用短基线集差分干涉测量技术对三峡库区奉节段2018年7月—2020年7月的63景Sentinel-1A升轨影像进行地表形变反演,结合地面监测点进行对比界定,通过形变量-库水位-月降雨量的时间序列图进行水要素分析。获得结论如下: ①库水位变化和降雨是造成地表形变的重要因素,库水位变化对坡体影响主要体现在浮托减重效应和坡体内外的水位差,而降雨会减弱坡体的抗剪强度同时增加坡体自重进一步增加形变; ②库水位变化快则地表形变大,库水位变化慢则地表形变小; ③降雨与地表形变成正比,极强降雨时降雨完全主导着地表形变; ④研究区地表总体稳定,但消落带邻近区域发现2个形变异常区域: 异常区域年形变速率超过30 mm/a,区域内最高形变速率可达89 mm/a。结论具有较强的理论和实用价值,可为消落带区域地质灾害精准防治提供科学支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘建平
付占宝
邓福江
蔡卓言
赵瑞淇
崔伟
关键词 消落带水要素形变机理SBAS-InSAR三峡库区奉节段    
Abstract

Hydro-fluctuation belts are frequently struck by geological disasters. Therefore, ascertaining the effects of hydrological factors such as reservoir water level and rainfall on the surface deformation of these belts is of great significance for the early warning, prevention, and control of geological disasters. Based on 63 scenes of Sentinel-1 ascending images of the Fengjie section of the Three Gorges Reservoir Area from July 2018 to July 2020, this study conducted the inversion of surface deformation using the small baseline subset interferometric synthetic aperture Radar (SBAS-InSAR) technique. The inversion results were compared with the data of ground monitoring points, and the hydrological elements were analyzed using the time series diagrams of deformation, reservoir water level, and monthly rainfall. The conclusions are as follows: ① The change in the reservoir water level and rainfall are important factors causing surface deformation. The effects of the change in the reservoir water level on the slope are primarily reflected in the buoyancy effect and the water level difference inside and outside the slope. In comparison, rainfall can decrease the shear strength and increase the dead weight of the slope, thus further increasing the deformations; ② Quicker change in the reservoir water level corresponds to larger surface deformation, and vice versa; ③ Rainfall is directly proportional to surface deformation and totally dominates the surface deformation in the case of extremely heavy precipitation; ④ The surface of the study area is stable overall. However, two deformation anomaly zones have been found near the hydro-fluctuation belt. They have annual deformation rates of over 30 mm/a, with a maximum of up to 89 mm/a within the anomaly zones. The above conclusions have high theoretical and practical values and can provide scientific support for the accurate prevention and control of geological disasters in hydro-fluctuation belts.

Key wordshydro-fluctuation belt    hydrological element    deformation mechanism    SBAS-InSAR    Fengjie section of Three Gorges Reservoir
收稿日期: 2021-11-30      出版日期: 2023-07-07
ZTFLH:  P237  
基金资助:国家自然科学基金项目“智能手机辅助的多测站地面激光扫描森林调查方法研究”(41801394);重庆市规划和自然资源局科技项目“面向城镇新增建设用地的遥感智能变化发现研究与应用”(KJ-2020042);中铁隧道集团2021年度科技项目“既有运营地铁车站快速改造监测与控制技术研究”
通讯作者: 付占宝(1997-),男,硕士研究生,主要从事摄影测量与遥感方面研究。Email: f2695443173@163.com
作者简介: 潘建平(1976-),男,博士,教授,主要从事摄影测量与遥感、地质工程方面的研究。Email: 6370554@qq.com
引用本文:   
潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021413      或      https://www.gtzyyg.com/CN/Y2023/V35/I2/212
Fig.1  研究区位置示意图
属性 参数
轨道方向 升轨
成像模式 干涉测量宽幅模式
波段 C
波长/cm 5.6
分辨率/m 5×20
重访周期/d 12
轨道号 26
极化方式 VV
Tab.1  卫星影像参数
Fig.2  干涉对连接图
Fig.3  年平均形变速率图
Fig.4  验证对比图
监测站点
(监测时间2020-6-
5—2020-7-11)
监测站监测
结果(LOS向)
时序InSAR技术
监测结果(LOS向)
差值
ZDL01 -21.3 -18.8 +2.5
ZDL02 -8.4 -6.6 +1.8
Tab.2  数据验证
Fig.5  区域1形变过程
Fig.6  区域2形变过程
[1] 李姗泽, 邓玥, 施凤宁, 等. 水库消落带研究进展[J]. 湿地科学, 2019, 17(6):689-696.
Li S Z, Deng Y, Shi F N, et al. Research progress on water-level-fluctuation zones of reservoirs:A review[J]. Wetland Science, 2019, 17(6):689-696.
[2] 黄波林, 殷跃平, 张枝华, 等. 三峡工程库区岩溶岸坡消落带岩体劣化特征研究[J]. 岩石力学与工程学报, 2019, 38(9):1786-1796.
Huang B L, Yin Y P, Zhang Z H, et al. Study on deterioration characteristics of shallow rock mass in water the level fluctuation zone of karst bank slopes in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9):1786-1796.
[3] 杨何, 汤明高, 许强, 等. 三峡库区消落带岸坡岩体劣化特性测试及质量评价[J]. 水利学报, 2020, 51(11):1360-1371.
Yang H, Tang M G, Xu Q, et al. Deterioration characteristic test and quality evaluation of bank slope rock mass in hydro-fluctuation belt of Three Gorges Reservoir area[J]. Journal of Hydraulic Engineering, 2020, 51(11):1360-1371.
[4] 沈振锋, 张开金, 夏雪, 等. 基于文献计量法的三峡库区消落带研究现状及热点分析[J]. 水生态学杂志, 2021, 42(1):26-34.
Shen Z F, Zhang K J, Xia X, et al. Bibliometric analysis of the current situation and hot research topics on the water level fluctuation zone of Three Gorges Reservoir[J]. Journal of Hydroecology, 2021, 42(1):26-34.
[5] 高磊. 三峡库区巫山段消落带地形变化及地质灾害分析[D]. 北京: 中国地质大学(北京), 2018.
Gao L. Terrain change and geological hazard analysis of the hydro-fluctuation belt in the Wushan of Three Gorges Reservoir area[D]. Beijing: China University of Geosciences (Beijing), 2018.
[6] 王丰. 奉节消落带岸坡稳定性评价[D]. 北京: 中国地质大学(北京), 2019.
Wang F. Stability evaluation of bank slopes in Fengjie[D]. Beijing: China University of Geosciences (Beijing), 2019.
[7] 周剑, 邓茂林, 李卓骏, 等. 三峡库区浮托减重型滑坡对库水升降的响应规律[J]. 水文地质工程地质, 2019, 46(5):136-143.
Zhou J, Deng M L, Li Z J, et al. Response patterns of buoyancy weight loss landslides under reservoir water level fluctuation in the Three Gorges Rservoir area[J]. Hydrogeology & Engineering Geology, 2019, 46(5):136-143.
[8] 付小林, 汤明高, 叶润青, 等. 不同库水消落方式下动水压力型滑坡变形与稳定性响应研究[J]. 水利水电技术(中英文), 2021, 52(1):201-211.
Fu X L, Tang M G, Ye R Q, et al. Study on deformation and stability of hydrodynamic landslide under different reservoir water fluctuation modes[J]. Water Resources and Hydropower Engineering, 2021, 52(1):201-211.
[9] Andrew K G, Richard M G, Howard A Z. Mapping small elevation changes over large areas:Differential Radar interferometry[J]. Journal of Geophysical Research Solid Earth, 1989, 94(B7):9183-9191.
[10] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
doi: 10.1109/TGRS.2002.803792
[11] 姜兆英. 短基线集InSAR形变模型的不适定问题解算方法研究[J]. 测绘学报, 2020, 49(3):399.
doi: 10.11947/j.AGCS.2020.20190075
Jiang Z Y. Study on the solving methods of the ill-posed problems of the SBAS InSAR deformation model[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3):399.
doi: 10.11947/j.AGCS.2020.20190075
[12] 海香. 重庆市奉节县地质灾害风险评价及防灾减灾措施[D]. 重庆: 西南大学, 2008.
Hai X. A study on risk assessment about geological disasters and hazard prevention and mitigation measures of Fengjie in Chongqing[D]. Chongqing: Southwest University, 2008.
[13] 马新建. 三峡库区滑坡堆积体的渗透特性及渗流规律研究[D]. 成都: 成都理工大学, 2018.
Ma X J. The study of the permeability characteristics and seepage law of landslide accumulation body in the Three Gorges Reservoir area[D]. Chengdu: Chengdu University of Technology, 2018.
[14] 许嘉慧, 孙德亮, 王月, 等. 基于GIS与改进层次分析法的奉节县滑坡易发性区划[J]. 重庆师范大学学报(自然科学版), 2020, 37(2):36-44,2,142.
Xu J H, Sun D L, Wang Y, et al. Landslide susceptibility mapping of Fengjie County based on GIS and improved analytic hierarchy process[J]. Journal of Chongqing Normal University(Natural Science), 2020, 37(2):36-44,2,142.
[15] 吴俊峰, 罗永红, 周亮亮. 浮托减重效应对三峡库区竹林湾滑坡稳定性影响研究[J]. 三峡大学学报(自然科学版), 2019, 41(6):48-53.
Wu J F, Luo Y H, Zhou L L. Study of buoyancy effect on stability of Zhulinwan landslide in Three Gorges Reservoir area[J]. Journal of China Three Gorges University(Natural Sciences), 2019, 41(6):48-53.
[16] 李永康, 许强, 董远峰, 等. 库水位升降作用对动水压力型滑坡的影响——以三峡库区白家包滑坡为例[J]. 科学技术与工程, 2017, 17(18):18-24.
Li Y K, Xu Q, Dong Y F, et al. Influence of reservoir water level fluctuation on typical hydrodynamic pressure landslide:Taking Baijiabao landslide in Three Gorges Reservoir for an example[J]. Science Technology and Engineering, 2017, 17(18):18-24.
[17] 黄观文, 王家兴, 杜源, 等. 顾及降雨及库水位因素的滑坡时滞分析与预测——以三峡库区新铺滑坡为例[J]. 地球科学与环境学报, 2021, 43(3):621-631.
Huang G W, Wang J X, Du Y, et al. Time-delay analysis and prediction of landslide considering precipitation and reservoir water level:A case study of Xinpu landslide in Three Gorges Reservoir area[J]. Journal of Earth Sciences and Environment, 2021, 43(3):621-631.
[18] 闫怡秋, 郭长宝, 张永双, 等. 基于SBAS-InSAR技术的西藏雄巴古滑坡变形特征[J]. 地质学报, 2021, 95(11):3556-3570.
Yan Y Q, Guo C B, Zhang Y S, et al. Study on the deformation characteristics of Xiongba ancient landslide based on SBAS-InSAR method,Tibet[J]. Acta Geologica Sinica, 2021, 95(11):3556-3570.
[19] 朱同同, 史绪国, 周超, 等. 利用2016—2020年Sentinel-1数据的三峡库区树坪滑坡稳定性监测与分析[J]. 武汉大学学报(信息科学版), 2021, 46(10):1560-1568.
Zhu T T, Shi X G, Zhou C, et al. Stability monitoring and analysis of Shupinglandslide in Three Gorges Area with Sentinel-1 images from 2016 to 2020[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1560-1568.
[20] 王尚晓, 李士垚, 牛瑞卿. 木鱼包滑坡形变特征的InSAR监测分析[J]. 长江科学院院报, 2022, 39(4):77-84.
Wang S X, Li S Y, Niu R Q. Monitoring slope displacements of Muyubao landslide using InSAR analysis technique[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(4):77-84.
[1] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[2] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[3] 徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
[4] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[5] 何海英, 陈彩芬, 陈富龙, 唐攀攀. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1): 205-213.
[6] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发