Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 35-42    DOI: 10.6046/zrzyyg.2022493
  海岸带空间资源及生态健康遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
一种融合指数与主成分分量的随机森林遥感图像分类方法
梁锦涛1(), 陈超2(), 张自力3, 刘志松4
1.浙江海洋大学海洋科学与技术学院,舟山 316022
2.苏州科技大学地理科学与测绘工程学院,苏州 215009
3.浙江省生态环境监测中心(浙江省生态环境监测预警及质控研究重点实验室),杭州 310012
4.浙江海洋大学信息工程学院,舟山 316022
A random forest-based method integrating indices and principal components for classifying remote sensing images
LIANG Jintao1(), CHEN Chao2(), ZHANG Zili3, LIU Zhisong4
1. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
2. School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
3. Zhejiang Ecological and Environmental Monitoring Center (Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control), Hangzhou 310012, China
4. School of Information Engineering, Zhejiang Ocean University, Zhoushan 316022, China
全文: PDF(5080 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

准确获取土地利用/覆盖(land use/land cover,LULC)信息,对区域空间规划和可持续发展具有重要指导意义。地表形态的复杂性、地物类型的多样性、遥感图像特征的非线性给传统的遥感图像分类方法带来了挑战,且传统方法未充分利用遥感图像所蕴含的丰富信息。文章发展了一种随机森林遥感图像分类方法,融合指数与主成分分量开展LULC信息提取。首先,选择研究区影像进行云量筛选、影像中值合成,得到年际遥感影像; 其次,计算多种指数,提取主成分分量,将其融入到遥感图像波段堆栈中; 然后,构建不同机器学习算法分类器; 最后,基于混淆矩阵,使用总体精度与Kappa系数对分类结果进行评估。在杭州湾区域的实验结果表明, 植被指数、水体指数、建筑物指数与主成分分量的辅助决策能够提高分类的准确性,总体精度和Kappa系数分别为91.42%和0.894 2,高于传统随机森林、分类回归树和支持向量机等方法。融合指数和主成分分量的遥感图像分类方法能够准确地提取遥感图像中的地表覆盖特征,得到高精度的土地利用分类结果,为地表精细分类提供方法支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁锦涛
陈超
张自力
刘志松
关键词 随机森林土地利用/覆盖指数主成分分析精度评价    
Abstract

Accurate information about land use/land cover (LULC) can provide significant guidance for regional spatial planning and sustainable development. However, conventional methods for remote sensing image classification are challenging due to complex surface morphologies, diverse surface feature types, and nonlinear features of remote sensing images. Therefore, they fail to fully utilize the rich information in remote sensing images. This study developed a random forest-based classification method for remote sensing images to extract LULC information by integrating indices and principal components. First, the images covering the study area were selected to determine cloud cover and conduct median synthesis of images, obtaining interannual remote sensing images. Then, various calculated indices and the extracted principal components were integrated into the band stacks of remote sensing images. Furthermore, classifiers were constructed using different machine-learning algorithms. Finally, based on a confusion matrix, the classification results were evaluated using overall accuracy and the Kappa coefficient. The experimental results of the Hangzhouwan area show that the decision support based on vegetation, water, building indices, and principal components can improve the classification accuracy, yielding overall accuracy and Kappa coefficient of 91.42% and 0.894 2, respectively, which were higher than those of conventional methods such as random forest, classification and regression tree, and support vector machine. The method for remote sensing image classification proposed in this study, which integrates indices and principal components, can obtain high-accuracy land use classification results by accurately extracting land cover features in remote sensing images. This study will provide method support for fine-scale surface classification.

Key wordsrandom forest    land use/land cover    index    principal component analysis    accuracy evaluation
收稿日期: 2022-12-26      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“人类活动影响下的群岛区域海岸线时空演变机制分析”(42171311)
通讯作者: 陈 超(1982-),男,博士,教授,研究方向为海岸带环境遥感。Email: ayang198206@163.com
作者简介: 梁锦涛(1998-),男,硕士研究生,研究方向为海岸带环境遥感。Email: liangjintao@zjou.edu.cn
引用本文:   
梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022493      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/35
Fig.1  研究区以及局部对比区域
(Landsat8 OLI B7(R),B6(G),B4(B)彩色合成)
Fig.2  研究流程
类别 定义 样本
点/个
遥感图像特征
(标准假彩色合成)
建设用地 城乡居民点及工矿交通等用地 210
林地 树木、灌木和其他林地 220
水体 自然陆地水域、水利设施用地和养殖池塘 130
耕地 长年可正常耕作的农田 250
裸地 地表为土壤或岩石,土地基本不被植被覆盖 100
滩涂 海高低潮位之间的潮汐淹没区 100
Tab.1  分类方案、样本点及图像特征
Fig.3  4种方法分类结果
类别 本文方法 RF CART SVM
OA/% 91.42 88.78 83.17 77.23
Kappa系数 0.894 2 0.861 5 0.792 6 0.716 1
Tab.2  4种机器学习算法分类精度对比
类别 建设用地 林地 水体 耕地 裸地 滩涂
ESA 2 851.35 2 884.21 605.99 3 812.34 1 274.23 141.40
本文方法 2 984.76 1 881.52 680.21 4 800.59 1 078.13 161.50
RF 2 545.11 1 776.72 675.00 5 398.44 1 029.98 166.13
CART 2 964.11 1 803.62 1 216.39 4 594.25 848.88 174.46
SVM 3 507.76 1 939.85 438.10 5 539.48 1.68 163.52
Tab.3  4种分类方法各类别面积统计
Fig.4  局部区域分类结果对比
[1] Rawat J S, Kumar M. Monitoring land use/cover change using remote sensing and GIS techniques:A case study of Hawalbagh Block,District Almora,Uttarakhand,India[J]. The Egyptian Journal of Remote Sensing and Space Science, 2015, 18(1):77-84.
doi: 10.1016/j.ejrs.2015.02.002
[2] Yao J, Wu J, Xiao C, et al. The classification method study of crops remote sensing with deep learning,machine learning,and Google Earth Engine[J]. Remote Sensing, 2022, 14(12):2758.
doi: 10.3390/rs14122758
[3] 杨耘, 徐丽, 颜佩丽. 条件随机场框架下基于随机森林的城市土地利用/覆盖遥感分类[J]. 国土资源遥感, 2014, 26(4):51-55.doi:10.6046/gtzyyg.2014.04.09.
doi: 10.6046/gtzyyg.2014.04.09
Yang Y, Xu L, Yan P L. Urban land use/cover remote sensing classification based on random forest under conditional random field framework[J]. Remote Sensing for Land and Resources, 2014, 26(4):51-55.doi:10.6046/gtzyyg.2014.04.09.
doi: 10.6046/gtzyyg.2014.04.09
[4] 熊华, 刘耀林, 车珊珊, 等. 基于支持向量机的土地利用变化模拟模型[J]. 武汉大学学报(信息科学版), 2009, 34(3):366-369.
Xiong H, Liu Y L, Che S S, et al. Simulation model of land use change based on support vector machine[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3):366-369.
[5] 杨曦光, 黄海军, 严立文, 等. 基于决策树方法的海岛土地利用分类研究[J]. 国土资源遥感, 2012, 24(2):116-120.doi:10.6046/gtzyyg.2012.02.21.
doi: 10.6046/gtzyyg.2012.02.21
Yang X G, Huang H J, Yan L W, et al. Research on island land use classification based on decision tree method[J]. Remote Sensing for Land and Resources, 2012, 24(2):116-120.doi:10.6046/gtzyyg.2012.02.21.
doi: 10.6046/gtzyyg.2012.02.21
[6] Bangira T, Alfieri S M, Menenti M, et al. Comparing thresholding with machine learning classifiers for mapping complex water[J]. Remote Sensing, 2019, 11(11):1351.
doi: 10.3390/rs11111351
[7] Wu H, Lin A, Xing X, et al. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103:102475.
doi: 10.1016/j.jag.2021.102475
[8] Rodriguez-Galiano V F, Ghimire B, Rogan J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67:93-104.
doi: 10.1016/j.isprsjprs.2011.11.002
[9] 武复宇, 王雪, 丁建伟, 等. 基于改进的多级联随机森林网络高光谱遥感影像分类[J]. 遥感学报, 2020, 24(4):439-453.
Wu F Y, Wang X, Ding J W, et al. Hyperspectral remote sensing image classification based on improved multi-cascade random forest network[J]. Journal of Remote Sensing, 2020, 24(4):439-453.
[10] Ge G, Shi Z, Zhu Y, et al. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery:Performance assessment of four machine learning algorithms[J]. Global Ecology and Conservation, 2020, 22:e00971.
doi: 10.1016/j.gecco.2020.e00971
[11] 肖湘文, 沈校熠, 柯长青, 等. 基于Sentinel-1A数据的多种机器学习算法识别冰山的比较[J]. 测绘学报, 2020, 49(4):509-521.
doi: 10.11947/j.AGCS.2020.20190174
Xiao X W, Shen X Y, Ke C Q, et al. Comparison of multiple machine learning algorithms based on Sentinel-1A data to identify icebergs[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4):509-521.
[12] 董娟, 任广波, 胡亚斌, 等. 基于高分辨率遥感的珊瑚礁地貌单元体系构建和分类方法——以8波段Worldview-2影像为例[J]. 热带海洋学报, 2020, 39(4):116-129.
doi: 10.11978/2019100
Dong J, Ren G B, Hu Y B, et al. Construction and classification of coral reef geomorphological unit system based on high-resolution remote sensing: Taking 8-band Worldview-2 image as an example[J]. Journal of Tropical Oceanography, 2020, 39(4):116-129.
[13] 贾明明, 刘殿伟, 王宗明, 等. 面向对象方法和多源遥感数据的杭州湾海岸线提取分析[J]. 地球信息科学学报, 2013, 15(2):262-269.
doi: 10.3724/SP.J.1047.2013.00262
Jia M M, Liu D W, Wang Z M, et al. Coastline extraction and analysis of Hangzhou Bay based on object-oriented method and multi-source remote sensing data[J]. Journal of Geo-Information Science, 2013, 15(2):262-269.
doi: 10.3724/SP.J.1047.2013.001262
[14] Li D, Lu D, Wu M, et al. Examining land cover and greenness dynamics in Hangzhou Bay in 1985—2016 using Landsat time-series data[J]. Remote Sensing, 2017, 10(1):32.
doi: 10.3390/rs10010032
[15] Liang H, Chen C, Wang K, et al. Long-term spatiotemporal changes in ecosystem services caused by coastal wetland type transformation in China’s Hangzhou Bay[J]. Journal of Marine Science and Engineering, 2022, 10(11):1781.
doi: 10.3390/jmse10111781
[16] 李加林, 王丽佳. 围填海影响下东海区主要海湾形态时空演变[J]. 地理学报, 2020, 75(1):126-142.
doi: 10.11821/dlxb202001010
Li J L, Wang L J. Spatial and temporal evolutions of the major bays in the East China Sea under the influence of reclamation[J]. Acta Geographica Sinica, 2020, 75(1):126-142.
doi: 10.11821/dlxb202001010
[17] Chen H, Chen C, Zhang Z, et al. Changes of the spatial and temporal characteristics of land-use landscape patterns using multi-temporal Landsat satellite data:A case study of Zhoushan Island,China[J]. Ocean and Coastal Management, 2021, 213:105842.
doi: 10.1016/j.ocecoaman.2021.105842
[18] Chen C, Chen H, Liao W, et al. Dynamic monitoring and analysis of land-use and land-cover change using Landsat multitemporal data in the Zhoushan Archipelago,China[J]. IEEE Access, 2020, 8:210360-210369.
doi: 10.1109/Access.6287639
[19] 许晓聪, 李冰洁, 刘小平, 等. 全球2000—2015年30 m分辨率逐年土地覆盖制图[J]. 遥感学报, 2021, 25(9):1896-1916.
Xu X C, Li B J, Liu X P, et al. Mapping annual global land cover changes at a 30 m resolution from 2000 to 2015[J]. National Remote Sensing Bulletin, 2021, 25(9):1896-1916.
[20] 邹亚东, 何亮, 张晓萍, 等. 基于GEE数据平台的北洛河流域1970—2019年土地利用结构变化特征[J]. 水土保持通报, 2021, 41(6):209-219.
Zou Y D, He L, Zhang X P, et al. Characteristics of land use structure change in Beiluo River basin during 1970—2019 based on Google Earth Engine[J]. Bulletin of Soil and Water Conservation, 2021, 41(6):209-219.
[21] 陈慧欣, 陈超, 张自力, 等. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4):60-67.doi:10.6046/zrzyyg.2022308.
doi: 10.6046/zrzyyg.2022308
Chen H X, Chen C, Zhang Z L, et al. A method for extracting intertidal remote sensing information based on Google Earth Engine cloud platform[J]. Remote Sensing for Natural Resources, 2022, 34(4):60-67.doi:10.6046/zrzyyg.2022308.
doi: 10.6046/zrzyyg.2022308
[22] Wang C, Jia M, Chen N, et al. Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform:A case study in the middle Yangtze River basin[J]. Remote Sensing, 2018, 10(10):1635.
doi: 10.3390/rs10101635
[23] Chachondhia P, Shakya A, Kumar G. Performance evaluation of machine learning algorithms using optical and microwave data for LULC classification[J]. Remote Sensing Applications:Society and Environment, 2021, 23:100599.
doi: 10.1016/j.rsase.2021.100599
[24] Li X, Chen D, Duan Y, et al. Understanding land use/land cover dynamics and impacts of human activities in the Mekong Delta over the last 40 years[J]. Global Ecology and Conservation, 2020, 22:e00991.
doi: 10.1016/j.gecco.2020.e00991
[25] Pal M. Random forest classifier for remote sensing classification[J]. International Journal of Remote Sensing, 2005, 26(1):217-222.
doi: 10.1080/01431160412331269698
[26] Cutler D R, Edwards Jr T C, Beard K H, et al. Random forests for classification in ecology[J]. Ecology, 2007, 88(11):2783-2792.
doi: 10.1890/07-0539.1 pmid: 18051647
[27] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324
[28] 陈超, 傅姣琪, 随欣欣, 等. 面向灾后水体遥感信息提取的知识决策树构建及应用[J]. 遥感学报, 2018, 22(5):792-801.
Chen C, Fu J Q, Sui X X, et al. Construction and application of knowledge decision tree after a disaster for water body information extraction from remote sensing images[J]. Journal of Remote Sensing, 2018, 22(5):792-801.
[29] 张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326.
Zhang L, Gong Z N, Wang Q W, et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images[J]. Journal of Remote Sensing, 2019, 23(2):313-326.
[30] Wang M, Wan Y, Ye Z, et al. Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm[J]. Information Sciences, 2017, 402:50-68.
doi: 10.1016/j.ins.2017.03.027
[31] Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews:Computational Statistics, 2010, 2(4):433-459.
doi: 10.1002/wics.101
[32] Ringnér M. What is principal component analysis?[J]. Nature Bio-technology, 2008, 26(3):303-304.
[33] 陈超, 陈慧欣, 陈东, 等. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2):141-152.doi:10.6046/gtzyyg.2020248.
doi: 10.6046/gtzyyg.2020248
Chen C, Chen H X, Chen D, et al. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands[J]. Remote Sensing of Land and Resources, 2021, 33(2):141-152.doi:10.6046/gtzyyg.2020248.
doi: 10.6046/gtzyyg.2020248
[34] 孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020, 24(5):479-510.
Sun W W, Yang G, Chen C, et al. Development status and literature analysis of China’s earth observation remote sensing satellites[J]. Journal of Remote Sensing, 2020, 24(5):479-510.
[1] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[2] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[3] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[4] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[5] 滑永春, 陈家豪, 孙小添, 裴志永. 内蒙古段黄河流域景观生态风险分析[J]. 自然资源遥感, 2023, 35(2): 220-229.
[6] 王珏, 郭振, 张志卫, 徐文学, 许昊. 基于倾斜摄影测量的三维景观指数构建——以山东田横岛为例[J]. 自然资源遥感, 2023, 35(2): 112-121.
[7] 吴玉鑫, 王卷乐, 韩保民, 严欣荣. 基于时空谱特征的墨脱县森林分类方法与实现[J]. 自然资源遥感, 2023, 35(1): 180-188.
[8] 黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
[9] 代云豪, 管瑶, 冯春涌, 蒋敏, 贺兴宏. 基于光谱指数建模的阿拉尔垦区土壤盐渍化信息提取与分析[J]. 自然资源遥感, 2023, 35(1): 205-212.
[10] 许青云, 李莹, 谭靖, 张哲. 基于高分六号卫星数据的红树林提取方法[J]. 自然资源遥感, 2023, 35(1): 41-48.
[11] 李博, 林文鹏, 李鲁冰. 面向SDG15的钱江源国家公园生态系统服务时空分析[J]. 自然资源遥感, 2022, 34(4): 243-253.
[12] 陈行, 刘汉湖, 李金豪, 范诗铃, 葛宗旭. 基于夜光遥感的城市化与生态环境耦合协调分析[J]. 自然资源遥感, 2022, 34(4): 280-285.
[13] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[14] 史姝姝, 窦银银, 陈永强, 匡文慧. 中国海岸带区域城市扩展遥感监测与内部地表覆盖时空分异特征分析[J]. 自然资源遥感, 2022, 34(4): 76-86.
[15] 赵连杰, 吴孟泉, 郑龙啸, 栾绍鹏, 赵贤峰, 薛明月, 刘佳燕, 刘晨曦. 胶东半岛北部海岸线时空变迁及驱动分析[J]. 自然资源遥感, 2022, 34(4): 87-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发